Chapter 2 Matrix Algebra

Liu Rui

School of Mathematics
South China University of Technology
scliurui@scut.edu.cn

2019-11-08
§ 2.9 Dimension and Rank
A basis and a spanning set

A spanning set of \mathbb{R}^3: $Span\{\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}, \overrightarrow{e_4}\}$, where

$$\overrightarrow{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \overrightarrow{e_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \overrightarrow{e_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad \overrightarrow{e_4} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

A basis of \mathbb{R}^3 (standard basis)

$$\overrightarrow{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \overrightarrow{e_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \overrightarrow{e_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$
A basis and a spanning set

A spanning set of a subspace H in \mathbb{R}^n.

1. It may be linearly dependent.
2. Each vector in H may have many linear combination form.

A basis of a subspace H in \mathbb{R}^n.

1. It must be linearly independent.
2. Each vector in H have a unique linear combination form.
Coordinate Systems

The coordinates (坐标) relative to a basis

Definition (Coordinates)

Suppose the set $B = \{\vec{b}_1, ..., \vec{b}_p\}$ is a basis for a subspace H. For each \vec{x} in H, the coordinates of \vec{x} relative to the basis B are the weights $c_1, ..., c_p$ such that $\vec{x} = c_1 \vec{b}_1 + \cdots + c_p \vec{b}_p$, and the vector in \mathbb{R}^p

$$[\vec{x}]_B = \begin{pmatrix} c_1 \\ \vdots \\ c_p \end{pmatrix}$$

is called the coordinate vector of \vec{x} (relative to B) or the B-coordinate vector of \vec{x}.
The coordinates relative to a basis

Example

Let \(\vec{v}_1 = \begin{pmatrix} 3 \\ 6 \\ 2 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \vec{x} = \begin{pmatrix} 3 \\ 12 \\ 7 \end{pmatrix}, \) and \(B = \{\vec{v}_1, \vec{v}_2\}. \)

1. Determine if \(B \) is a basis for \(H = \text{span}\{\vec{v}_1, \vec{v}_2\}. \)
2. Determine if \(\vec{x} \) is in \(H. \)
3. If \(B \) is a basis for \(H, \) find the coordinate vector of \(\vec{x} \) relative to \(B. \)
Solution: Obviously, B is a basis of H since \vec{v}_1 and \vec{v}_2 are linearly independent.

To determine if \vec{x} is in H is equivalent to that the equation

$$y_1 \vec{v}_1 + y_2 \vec{v}_2 = \vec{x}$$

is consistent, where y_1, y_2 are variables.

Applying row operations to the augmented matrix:

$$A = \begin{pmatrix} 3 & -1 & 3 \\ 6 & 0 & 12 \\ 2 & 1 & 7 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{pmatrix}.$$

Thus the equation is consistent and \vec{x} is in H.
From above echelon form it follows that $y_1 = 2$, $y_2 = 3$.

Therefore, $[x]_B = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$.
1. Notice that although points in H are also in \mathbb{R}^3, they are completely determined by their coordinate vectors, which belong to \mathbb{R}^2.

2. The correspondence $\vec{x} \mapsto [\vec{x}]_B$ is a one-to-one and onto mapping from H to \mathbb{R}^2.
The dimension of a subspace

1. It is clear that if a subspace H has a basis of n vectors, then every basis of H must consist of exactly n vectors.

2. For example, \mathbb{R}^m has m vectors $\vec{e}_1, \ldots, \vec{e}_m$ in the standard basis, thus any basis for \mathbb{R}^m must consist of m vectors.
The dimension of a subspace

Definition (The dimension of a subspace)

1. The dimension of a nonzero subspace H, denoted by $\dim H$, is the number of vectors in any basis for H.

2. The dimension of the zero subspace $\{\vec{0}\}$ is defined to be zero. The zero subspace has no basis.
Basis for a subspace

Example (Example 1)

The space \mathbb{R}^n has dimension n.

Standard basis for \mathbb{R}^n:

$$
\vec{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \vec{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \ldots, \quad \vec{e}_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}.
$$
Basis for a subspace

Example (Example 2)

A plane through $\vec{0}$ in \mathbb{R}^3 is two-dimensional.
Example (Example 3)

A line through \(\vec{0} \) in \(\mathbb{R}^2 \) or \(\mathbb{R}^3 \) is one-dimensional.

\[\mathbf{v}_1 \neq \mathbf{0}, \mathbf{v}_2 = k \mathbf{v}_1. \]
Basis for a subspace

Example (Example 4)

For equation $A\vec{x} = \vec{0}$, the dimension of $\text{Null } A$ is exactly the number of free variables.
Questions:

1. What is the dimension of \(\text{Null } A \) of an invertible \(n \times n \) matrix \(A \)?

2. What is the dimension of \(\text{Col } A \) of an invertible \(n \times n \) matrix \(A \)?

3. What is the dimension of \(\text{Row } A \) (the row space) of an invertible \(n \times n \) matrix \(A \)?

4. What is the dimension of \(\text{span} \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\} \)?

5. The dimension of \(\text{span} \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \end{pmatrix} \right\} \)?
The rank of a matrix

Definition (Rank of a matrix (矩阵的秩))

The rank of a matrix A, denoted by $\text{rank } A$, is the dimension of the column space of A.

$$
B = \begin{pmatrix}
1 & 0 & -3 & 5 & 0 \\
0 & 1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
$$

The basis of $\text{Col } B$ is $\{ \vec{b}_1, \vec{b}_2, \vec{b}_5 \}$.

$$
\text{rank } B = \text{dim } (\text{Col } B) = 3
$$
The rank of a matrix

Example:

\[C = \begin{pmatrix}
 3 & -7 & -2 & 2 \\
 0 & -2 & -1 & 2 \\
 0 & 0 & -1 & 1 \\
 0 & 0 & 0 & -1 \\
\end{pmatrix} \]

\[\text{rank } C = \text{dim } (\text{Col } C) = 4 \]
The rank of a matrix

Example:

For the identity matrix I_4:

$$I_4 = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\text{rank } I_4 = \dim (\text{Col } I_4) = 4$$
Proposition (Rank of a matrix)

The rank of a matrix A, is equivalent to the number of leading entries of the (reduced) echelon form of A.

$$A = \begin{pmatrix} 1 & -3 & -4 \\ -4 & 6 & -2 \\ -3 & 7 & 6 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & -4 \\ 0 & -6 & -18 \\ 0 & 0 & 0 \end{pmatrix}$$

\[\text{rank } A = 2. \]
The rank of a matrix

Example (Rank of a matrix)

Find the rank of the following matrix A, and $\dim \ (Nul \ A)$:

$$A = \begin{pmatrix}
2 & 5 & -3 & -4 & 8 \\
4 & 7 & -4 & -3 & 9 \\
6 & 9 & -5 & 2 & 4 \\
0 & -9 & 6 & 5 & -6
\end{pmatrix}$$
The rank of a matrix

Solution:

\[
A = \begin{pmatrix}
2 & 5 & -3 & -4 & 8 \\
4 & 7 & -4 & -3 & 9 \\
6 & 9 & -5 & 2 & 4 \\
0 & -9 & 6 & 5 & -6 \\
0 & -9 & 6 & 5 & -6
\end{pmatrix}
\sim
\begin{pmatrix}
2 & 5 & -3 & -4 & 8 \\
0 & -3 & 2 & 5 & -7 \\
0 & 0 & 0 & 4 & -6 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

\[
\text{rank } A = \dim(\text{Col } A) = 3, \quad \dim(\text{Nul } A) = 2.
\]
The rank of a matrix

Solution:

\[A = \begin{pmatrix}
 2 & 5 & -3 & -4 & 8 \\
 4 & 7 & -4 & -3 & 9 \\
 6 & 9 & -5 & 2 & 4 \\
 0 & -9 & 6 & 5 & -6
\end{pmatrix} \sim \begin{pmatrix}
 2 & 5 & -3 & -4 & 8 \\
 0 & -3 & 2 & 5 & -7 \\
 0 & 0 & 0 & 4 & -6 \\
 0 & 0 & 0 & 0 & 0
\end{pmatrix} \]

\[\text{rank } A = \text{dim } (\text{Col } A) = 3, \quad \text{dim } (\text{Nul } A) = 2. \]
The rank of a matrix

Proposition (Rank of a matrix)

If a matrix A has n columns, then

$$\text{rank } A + \dim Nul A = n.$$

Note: Here A can be an $m \times n$ matrix.
The rank of a matrix

For an $m \times n$ matrix,

the number of free variables ($\dim \text{Nul} \ A$)
+
the number of leading entries of the echelon form ($\text{rank} \ A$)
= n.

$$A = \begin{pmatrix}
2 & 5 & -3 & -4 & 8 \\
0 & -3 & 2 & 5 & -7 \\
0 & 0 & 0 & 4 & -6 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

The number of free variables $= 5 - 3 = 2$.

The number of leading entries of the echelon form $= 3$.
In an reduced echelon form of $n \times n$ matrix A, the number of zero rows ($\dim \text{Nul } A$) plus the number of nonzero rows ($\text{rank } A$) equals n.

$$A = \begin{pmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
\end{pmatrix}$$
The dimension of a subspace

Example (Basis for $\text{Col } A$ and $\text{Nul } A$)

If the matrix A has the following echelon form. Find bases for $\text{Col } A$ and $\text{Nul } A$, and give the dimensions of these subspaces.

\[
A = \begin{bmatrix}
1 & 3 & 2 & -6 \\
3 & 9 & 1 & 5 \\
2 & 6 & -1 & 9 \\
5 & 15 & 0 & 14
\end{bmatrix} \sim \begin{bmatrix}
1 & 3 & 3 & 2 \\
0 & 0 & 5 & -7 \\
0 & 0 & 0 & 5 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]
The dimension of a subspace

Solution:

\[
A = \begin{bmatrix}
1 & -3 & 2 & -4 \\
-3 & 9 & -1 & 5 \\
2 & -6 & 4 & -3 \\
-4 & 12 & 2 & 7 \\
\end{bmatrix}
\sim
\begin{bmatrix}
1 & -3 & 2 & -4 \\
0 & 0 & \textcircled{5} & -7 \\
0 & 0 & 0 & \textcircled{5} \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

The leading entries are respectively in column 1, 3 and 4. So the bases for \textit{Col} \ A are

\[
\begin{bmatrix}
1 \\
-3 \\
2 \\
-4 \\
\end{bmatrix}, \begin{bmatrix}
2 \\
-1 \\
4 \\
2 \\
\end{bmatrix}, \begin{bmatrix}
-4 \\
5 \\
-3 \\
7 \\
\end{bmatrix}
\]
The dimension of a subspace

In order to find a basis of $\text{Nul } A$, use the augmented matrix of $A\vec{x} = \vec{0}$:

$$
\begin{bmatrix}
1 & -3 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}.
$$

\[x_1 - 3x_2 = 0 \]
\[x_3 = 0 \]
\[x_4 = 0. \]

x_2 is the free variable.

$$
x =
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix}
=
\begin{bmatrix}
3x_2 \\
x_2 \\
0 \\
0
\end{bmatrix}
= x_2
\begin{bmatrix}
3 \\
1 \\
0 \\
0
\end{bmatrix}.
$$
The dimension of a subspace

So the vector

\[
\begin{pmatrix}
3 \\
1 \\
0 \\
0
\end{pmatrix}
\]

is the basis for \(\text{Nul } A\).

From the above calculation, we have that

\[
\dim \text{Col } A = 3
\]

and

\[
\dim \text{Nul } A = 1.
\]
The dimension of a subspace

Theorem (The basis theorem)

Let H be a p-dimensional subspace of \mathbb{R}^n.

1. Any linearly independent set of exactly p vectors in H is automatically a basis for H.

2. Also, any set of p vectors of H that spans H is automatically a basis for H.

Vector set $\left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}$ is a basis for \mathbb{R}^2.
Rank and its propositions about the invertible matrices:

Theorem (The invertible matrix theorem)

Let A be an $n \times n$ square matrix. Then the following statements are equivalent:

1. A is an invertible matrix.
2. The columns of A form a basis of \mathbb{R}^n.
3. $\text{Col } A = \text{Span}\{\vec{a}_1, \vec{a}_2, ..., \vec{a}_n\} = \mathbb{R}^n$.
4. $\dim \text{Col } A = n$, \hspace{1cm} (rank $A = n$).
5. $\text{Nul } A = \{\vec{0}\}$.
6. $\dim \text{Nul } A = 0$.

Subspaces of \mathbb{R}^n

Exercise: If A is an $m \times n$ matrix:

a. If $\mathcal{B} = \{v_1, \ldots, v_p\}$ is a basis for a subspace H and if $x = c_1v_1 + \cdots + c_pv_p$, then c_1, \ldots, c_p are the coordinates of x relative to the basis \mathcal{B}.

b. Each line in \mathbb{R}^n is a one-dimensional subspace of \mathbb{R}^n.

c. The dimension of $\text{Col } A$ is the number of pivot columns in A.

d. The dimensions of $\text{Col } A$ and $\text{Nul } A$ add up to the number of columns in A.

e. If a set of p vectors spans a p-dimensional subspace H of \mathbb{R}^n, then these vectors form a basis for H.

SCUT, Liu Rui
Subspaces of \mathbb{R}^n

Exercise:

a. True
b. False
c. True
d. True
e. True
Subspaces of \mathbb{R}^n

Exercise:

a. If \mathcal{B} is a basis for a subspace H, then each vector in H can be written in only one way as a linear combination of the vectors in \mathcal{B}.

b. The dimension of Nul A is the number of variables in the equation $Ax = 0$.

c. The dimension of the column space of A is rank A.

e. If H is a p-dimensional subspace of \mathbb{R}^n, then a linearly independent set of p vectors in H is a basis for H.
Subspaces of \mathbb{R}^n

Exercise:

a. True
b. False
c. True
e. True
Homework:

Section 2.9

p. 165: 5, 6;

p. 166: 10, 12, 13;