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In this paper, we consider the generalized b-equation ut − uxxt + (b + 1)u2ux = buxuxx + uxxx.
For a given constant wave speed, we investigate the coexistence of multifarious exact nonlinear
wave solutions including smooth solitary wave solution, peakon wave solution, smooth periodic
wave solution, single singular wave solution and periodic singular wave solution. Not only is
the coexistence shown, but the concrete expressions are given via phase analysis and special
integrals. From our work, it can be seen that the types of exact nonlinear wave solutions of the
generalized b-equation are more than that of the b-equation. Many previous results are turned
to our special cases. Also, some conjectures and questions are presented.
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1. Introduction

In 2002, Degasperis et al. [2002a, 2002b] introduced
a type of nonlinear partial differential equation

ut − uxxt + (b + 1)uux = buxuxx + uuxxx, (1)

which is called the b-equation. When b = 2, the
b-equation becomes the CH equation. Camassa and
Holm [1993] showed that the CH equation is inte-
grable and has peaked solitons. Cooper and Shep-
ard [1994] derived an approximate solitary wave
solution of the CH equation by using some varia-
tional functions. Constantin [1997], Constantin and
Strauss [2000] gave the mathematical description
of the existence of interacting solitary waves and
showed that the peakons are stable for the CH
equation. Boyd [1997] derived a perturbation series
which converges even at the peakon limit, and gave

three analytical representations for the spatially
periodic generalization of the peakon which is called
“the coshoidal wave” in the CH equation. Recently,
the CH equation has been studied successively by
many authors (e.g. [Johnson, 2002; Lenells, 2002;
Liu et al. 2004, 2006; Reyes, 2002]).

When b = 3, the b-equation becomes the DP
equation which was given by Degasperis and Procesi
[1999]. Lundmark and Szmigielski [2003, 2005] pre-
sented an inverse scattering approach for computing
the n-peakon solutions of the DP equation and gave
the concrete expressions of the 3-peakon solutions.
Chen and Tang [2006] showed that the DP equation
has kink-like waves.

The solutions of the b-equation were studied
numerically for various values of b by Holm and
Staley [2003]. For arbitrary b > 1, Guo and Liu
[2005] showed that Eq. (1) has periodic cusp waves
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and constructed their presentations. Guha [2007]
proposed an Euler–Poincare formalism of the DP
equation.

To study the bifurcation of the peakon waves,
Liu and Qian [2001] suggested a generalized CH
equation

ut − uxxt + 3u2ux = 2uxuxx + uuxxx. (2)

Similarly, to investigate the change of peakon
waves, Wazwaz [2006, 2007] proposed a generalized
DP equation

ut − uxxt + 4u2ux = 3uxuxx + uuxxx (3)

and a generalized b-equation

ut − uxxt + (b + 1)u2ux = buxuxx + uuxxx. (4)

Since the CH and the DP equations possess
rich structure and properties, many authors were
interested in their modified forms, Eqs. (2)–(4).
Tian and Song [2004] gave some physical expla-
nation for Eq. (2). Shen and Xu [2005] discussed
the existence of smooth and nonsmooth traveling
waves for Eq. (2). Letting c denote the constant
wave speed of traveling waves, for some special val-
ues of c, the exact traveling wave solutions were
studied for Eqs. (2) and (3). When c = 1, Khuri
[2005] obtained a singular wave solution composed
of triangle functions for Eq. (2). When c = 1 and
c = 2 respectively, Wazwaz [2007] obtained eleven
exact traveling wave solutions composed of trian-
gle functions or hyperbolic functions for Eq. (2),
and Liu and Ouyang [2007] got a peakon solution
composed of hyperbolic functions for Eq. (2). He
et al. [2008a] used the integral bifurcation method
to obtain some exact solutions for Eq. (2). Liu
and Guo [2008] investigated the periodic blow-up
solutions and their limit forms for Eq. (2). When
c = 5/2, Wazwaz [2007] obtained nine exact travel-
ing wave solutions composed of hyperbolic functions
for Eq. (3). Besides, Liu and Ouyang [2007] got a
peakon solution composed of hyperbolic functions
for Eq. (3). Zhang et al. [2007] used the bifurca-
tion theory of dynamical systems to show the exis-
tence of some traveling waves for Eq. (2). Wang and
Tang [2008] obtained two exact solutions for Eq. (2)
when c = 1/3 and c = 3 respectively, and gave two
exact solutions for Eq. (3) when c = 1/4 and c = 4,
respectively. Yomba [2008a, 2008b] presented two
methods, the sub-ODE method and the generalized
auxiliary equation method, to find the exact trav-
eling wave solutions for Eqs. (2) and (3). He et al.
[2008b] used the bifurcation method of dynamical

systems to obtain some exact solutions for Eq. (3).
Liu and Pan [2009] studied the coexistence of multi-
farious explicit nonlinear wave solutions for Eqs. (2)
and (3).

When the wave speed c = (2 + b)/2, Wazwaz
[2007] obtained two solitary wave solutions for
Eq. (4). When c = 1/(1 + b), (2 + b)/2, 1+ b respec-
tively, Liu [2010] investigated the solitary wave solu-
tion for Eq. (4).

In this paper, we use the phase analysis of
planar systems and special integrals to study the
coexistence of multifarious exact nonlinear wave
solutions for Eq. (4). We will show that when the
constant wave speed c satisfies 0 < c < b + 1, mul-
tifarious exact nonlinear wave solutions coexist for
Eq. (4). We will also give the concrete expressions of
these solutions and test their correctness by using
the software Mathematica. Some previous results
(e.g. [He et al., 2008a, 2008b; Khuri, 2005; Liu, 2010;
Liu & Guo, 2008; Liu & Ouyang, 2007; Liu & Pan,
2009; Shen & Xu, 2005; Tian & Song, 2004; Wang &
Tang, 2008; Wazwaz, 2006, 2007; Yomba, 2008a,
2008b; Zhang et al., 2007]) become our special cases.

This paper is organized as follows. In Sec. 2,
we state our main results. In Sec. 3, we give some
preliminaries. In Sec. 4, we give the demonstrations
to our main results. A conclusion is given in Sec. 5.

2. Main Results

In this paper, we suppose the parameter b > 1.
Under this supposition it follows that

0 <
1

1 + b
<

4(1 + b)
4 + 2b + b2

< 1 + b. (5)

Thus for the constant wave speed c ∈ (0, 1 + b) we
have some results in the following five propositions.

Proposition 1. If the wave speed c satisfies 0 <
c < 1+b and c �= 1/(1 + b), then four types of exact
nonlinear wave solutions coexist for Eq. (4). These
exact solutions are hyperbolic smooth solitary wave
solution, hyperbolic peakon wave solution, hyperbolic
singular wave solution and trigonometric periodic
singular wave solution respectively. Denote

ξ = x − c t, (6)

p =
√

b(2 + b)(1 + b − c)c, (7)

α =
√

p

2b(2 + b)
. (8)
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Then the explicit expressions of these solutions are as follows:

(i) The hyperbolic smooth solitary wave solution

u1(ξ, c) =
1

b(b + 1)
[p − bc − 3p sech2 αξ]. (9)

(ii) The hyperbolic peakon wave solution

u2(ξ, c) =
1

b(b + 1)

[
p − bc +

3p(2bc + b2c − p)

(
√

3p cosh αξ +
√

2bc + b2c + 2p sinh|αξ|)2

]
. (10)

(iii) The hyperbolic singular wave solution

u3(ξ, c) =
1

b(b + 1)
(p − bc + 3p csch2αξ).

(11)

(iv) The trigonometric periodic singular wave
solution

u4(ξ, c) =
1

b(b + 1)
(2p − bc + 3p tan2αξ).

(12)

For the figures of u = ui(ξ, c) (i = 1, 2, 3, 4)
with b = 4 and c = 1/2, see Figs. 1(a)–1(d).

Remark 1. Since u4(ξ + π/2, c) is also a solution
of Eq. (4) and 1 + tan2 ξ = csc2ξ, the following
functions

u∧
4 (ξ, c) =

1
b(1 + b)

[2p − bc + 3p cot2αξ], (13)

u∗
4(ξ, c) =

1
b(1 + b)

[−p − bc + 3p csc2αξ], (14)

and

u⊕
4 (ξ, c) =

1
b(1 + b)

[−p − bc + 3p sec2αξ] (15)

are the solutions of Eq. (4) too.

Proposition 2. If the wave speed c satisfies 0 <
c < 4(1 + b)/(4 + 2b + b2) and c �= 1/(1 + b), then
six types of exact nonlinear wave solutions coexist
for Eq. (4). These exact solutions are hyperbolic
smooth solitary wave solution u1(ξ, c), hyperbolic

(a) (b)

(c) (d)

Fig. 1. The figures of u = ui(ξ, c) (i = 1, 2, 3, 4) with b = 4 and c = 1/2.
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peakon wave solution u2(ξ, c), hyperbolic singular
wave solution u3(ξ, c), trigonometric periodic sin-
gular wave solution u4(ξ, c), elliptic smooth periodic
wave solution

u5(ξ, c) =




a1 + a2 sn2(β ξ, k1)

for 0 < c <
1

1 + b
,

a1 + a3 sn2(γ ξ, k2)

for
1

1 + b
< c <

4(1 + b)
4 + 2b + b2

,

(16)

and elliptic periodic singular wave solution

u6(ξ, c) =




a1 + a3 sn−2(β ξ, k1)

for 0 < c <
1

1 + b
,

a1 + a2 sn−2(γ ξ, k2)

for
1

1 + b
< c <

4(1 + b)
4 + 2b + b2

,

(17)

where

q =
√

3bc(2 + b)(4 + 4b − 4c − 2bc − b2c), (18)

a1 = −bc(4 + b) + q

2b(1 + b)
, (19)

a2 =
3bc(2 + b) + q

2b(1 + b)
, (20)

a3 =
q

b(1 + b)
, (21)

k1 =
3bc(2 + b) + q

2q
, (22)

k2 =
2q

3bc(2 + b) + q
, (23)

β =
√

q

6b(2 + b)
, (24)

and

γ =

√
3bc(2 + b) + q

12b(2 + b)
. (25)

Proposition 3. If the wave speed c = 1/(1 + b),
then three types of exact nonlinear wave solutions
coexist for Eq. (4). These solutions are as follows:

(i) Smooth solitary wave solution

u◦
1(x, t) =

1
1 + b

− 3(2 + b)
(1 + b)2

sech2

√
1

2(1 + b)

(
x − t

1 + b

)
. (26)

(ii) Hyperbolic singular wave solution

u◦
3(x, t) =

1
1 + b

+
3(2 + b)
(1 + b)2

csch2

√
1

2(1 + b)

(
x − t

1 + b

)
. (27)

(iii) Trigonometric periodic singular wave solution

u◦
4(x, t) =

1
(1 + b)2

[
3 + 2b + 3(2 + b) tan2

√
1

2(1 + b)

(
x − t

1 + b

)]
. (28)

Remark 2. The solutions u◦
1(x, t) and u◦

3(x, t) had
been obtained in [Liu, 2010], also the following
results:

If the wave speed c = 1 + b, then two types of
exact nonlinear wave solutions coexist for Eq. (4).
These solutions are peakon wave solution

u7(x, t) =
6(2 + b)

(
√

6 +
√

1 + b |x − (1 + b)t|)2 − 1,

(29)

and singular wave solution

u8(x, t) =
6(2 + b)

(1 + b)(x − (1 + b)t)2
− 1. (30)

Proposition 4. For these solutions, there are the
following relations or properties.

(1) When c tends to 1/(1 + b), it follows that :
(i) The hyperbolic smooth solitary wave solution

u1(ξ, c) becomes u◦
1(x, t), that is, the hyperbolic

smooth solitary wave persists.
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(ii) The hyperbolic peakon wave solution u2(ξ, c)
becomes a constant solution u = 1/(1 + b), that
is, the peakon wave disappears.

(iii) The hyperbolic singular wave solution u3(ξ, c)
becomes the hyperbolic singular wave solution
u◦

3(x, t), that is, the hyperbolic singular wave
persists.

(iv) The elliptic smooth periodic wave solution
u5(ξ, c) becomes the hyperbolic smooth solitary
wave solution u◦

1(x, t). For the varying figures
with b = 4 and c = 0.1, 0.19, 0.1999, 0.2001,
0.21, 0.3 respectively, see Figs. 2(a)–2(f ).

(v) The elliptic periodic singular wave solution
u6(ξ, c) becomes the hyperbolic singular wave
solution u◦

3(x, t). For the varying figures with
b = 4 and c = 0.1, 0.19, 0.1999, 0.2001, 0.21,
0.3 respectively, see Figs. 3(a)–3(f ).

(vi) The trigonometric periodic singular wave solu-
tion u4(ξ, c) becomes the trigonometric peri-
odic singular wave solution u◦

4(x, t), that is, the
trigonometric periodic singular wave persists.

(2) When c tends to 4(1 + b)/(4 + 2b + b2), it fol-
lows that :

(vii) The smooth periodic wave solution u5(ξ, c)
becomes a constant solution u = −2(4 + b)/
(4 + 2b + b2).

(viii) The periodic singular wave solution u6(ξ, c)
becomes a trigonometric periodic singular

wave solution

u9(x, t) =
2
δ

[
2(1 + b) + 3(2 + b)

× tan2

√
1 + b

δ

(
x − 4(1 + b)t

δ

)]
,

(31)

where

δ = 4 + 2b + b2. (32)

(3) When c tends to 1+b, the four solutions ui(ξ, c)
(i = 1, 2, 3, 4) become a constant solution u = −1.

Remark 3. Using the software Mathematica, we
have tested the correctness of these solutions. For
instance, testing u1(ξ, c) with b = 4, the orders are
as follows (testing other solutions, the orders are
the same):

b = 4

p =
√

b(2 + b)(1 + b − c)c

q =
1

b(1 + b)

z =
√

p

2b(2 + b)
(x − c t)

(a) c = 0.1 (b) c = 0.19 (c) c = 0.1999

(d) c = 0.2001 (e) c = 0.21 (f) c = 0.3

Fig. 2. The varying figures of u5(ξ, c) when b = 4 and c tends to 1/(1 + b) = 0.2.
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(a) c = 0.1 (b) c = 0.19 (c) c = 0.1999

(d) c = 0.2001 (e) c = 0.21 (f) c = 0.3

Fig. 3. The varying figures of u6(ξ, c) when b = 4 and c tends to 1/(1 + b) = 0.2.

u1 = q(p − bc − 3 p Sech [z]2)

u = u1

Simplify [D[u, t]−D[D[u, t], {x, 2}]+(b+1)∗u∗u∗
D[u, x]− b ∗D[u, x] ∗D[u, {x, 2}]− u ∗D[u, {x, 3}]].

3. Preliminaries

For a given constant c > 0, substituting u = ϕ(ξ)
into Eq. (4) with ξ = x − c t, it follows that

−cϕ′ + cϕ′′′ + (1 + b)ϕ2ϕ′ = bϕ′ϕ′′ + ϕϕ′′′. (33)

Integrating (33) once, we have

(ϕ − c)ϕ′′ = g − cϕ +
1 + b

3
ϕ3 − b − 1

2
(ϕ′)2, (34)

where g is the constant of integration.
Letting y = ϕ′, it yields the following planar

system




dϕ

dξ
= y,

dy

dξ
=

g − cϕ +
1 + b

3
ϕ3 − b − 1

2
y2

ϕ − c
.

(35)

By using the transformation dτ = dξ/(ϕ − c),
(35) can be written as the planar system



dϕ

dτ
= (ϕ − c)y,

dy

dτ
= g − cϕ +

1 + b

3
ϕ3 − b − 1

2
y2.

(36)

Let

a0 =
6g − 6c2 + 2(1 + b)c3

3(b − 1)
, (37)

a1 =
2(1 + b)c2 − 2c

b
, (38)

a2 = 2c, (39)

a3 =
2(1 + b)
3(2 + b)

, (40)

and

H(ϕ, y) = (ϕ − c)b−1[a0 + a1(ϕ − c)

+ a2(ϕ − c)2 + a3(ϕ − c)3 − y2]. (41)

It is easy to check that

H(ϕ, y) = h (42)

is the first integration for both systems (35)
and (36). Therefore, both systems (35) and (36)
have the same topological phase portraits except
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the line ϕ = c. This implies that one can study
the phase portraits of system (35) from that of
system (36).

Now we begin to study the bifurcation phase
portraits of system (36). Let

z = f(ϕ), (43)

where

f(ϕ) = g − cϕ +
1 + b

3
ϕ3. (44)

We have

f ′(ϕ) = (1 + b)ϕ2 − c. (45)

When g = 0, it follows

f

(
±

√
c

1 + b

)
= ∓2c

3

√
c

1 + b
. (46)

Let

ϕ∗ =

√
3c

1 + b
, (47)

ϕ0 =
√

c

1 + b
, (48)

and

g0 =
2|c|
3

√
c

1 + b
. (49)

We draw the graph of z = f(ϕ) as in Fig. 4.
On the other hand, it is seen that (ϕ̃, 0) is

a singular point of system (36) if and only if
f(ϕ̃) = 0. At the singular point (ϕ̃, 0), it is easy
to see that the linearized system of (36) has the
eigenvalues

λ±(ϕ̃, 0) = ±
√

(ϕ̃ − c)f ′(ϕ̃). (50)

From (42) and (50) we see that the singular
point (ϕ̃, 0) is of the following properties:
(i) If (ϕ̃ − c)f ′(ϕ̃) > 0, then (ϕ̃, 0) is a saddle

point of system (36).
(ii) If (ϕ̃ − c)f ′(ϕ̃) = 0, then (ϕ̃, 0) is a degene-

rate saddle point of system (36).
(iii) If (ϕ̃ − c)f ′(ϕ̃) < 0, then (ϕ̃, 0) is a center

point of system (36).

Let

y0 =
2(1 + b)c3 − 6c2 + 6g

3(b − 1)
. (51)

Similarly, it can be seen that if y0 > 0, then
(c,−√

y0) and (c,
√

y0) are two saddle points of
system (36). According to the analysis above and
the values of H(ϕ, y) at the singular points, we
obtain five bifurcation curves:

g1(c) = − 2c
√

c

3
√

1 + b
, (52)

g2(c) =
2c(bc(3 + 3b − 3c − bc) − (−1 + c − bc + b2)Ω)

3b2(1 + b)2
, (53)

(a) g < −g0 (b) g = −g0 (c) −g0 < g < 0 (d) g = 0

(e) 0 < g < g0 (f) g = g0 (g) g > g0

Fig. 4. The graph of z = f(ϕ).
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g3(c) = c2

(
1 − 1 + b

3
c

)
, (54)

g4(c) =
2c(bc(3 + 3b − 3c − bc) + (−1 + c − bc + b2)Ω)

3b2(1 + b)2
, (55)

and

g5(c) =
2c
√

c

3
√

1 + b
, (56)

where

Ω =
√

b(2 + b)(1 + b − c)c. (57)

On a c–g plane, it is easy to test the following
properties:

(i) The five curves g = gi(c) (i = 1− 5) intersect
at (0, 0).

(ii) The three curves g = gi(c) (i = 3, 4, 5) have
another intersection (1/(1 + b), 2/(3(1 + b)2)).

(iii) The two curves g = g2(c) and g = g3(c)
have another intersection 4(1 + b)/(4 + 2b +
b2), 16(1 + b)2(8 − 2b − b2)/(3(4 + 2b + b2)3).

(iv) The two curves g = g1(c) and g = g3(c) have
another intersection (4/(1 + b),−(16/(3(1 +
b)2))).

(v) The three curves g = g1(c), g = g2(c) and
g = g4(c) have another intersection (1 + b,
−2(1 + b)/3).

(vi) When 0 < c < 4(1 + b)/(4 + 2b + b2) and
c �= (1/(1 + b)), it follows that

g5(c) > g4(c) > g3(c) > g2(c) > g1(c). (58)

(vii) When 4(1 + b)/(4 + 2b + b2) < c < 4/(1 + b),
it follows that

g5(c) > g4(c) > g2(c) > g3(c) > g1(c). (59)

(viii) When 4/(1 + b) < c < 1 + b, it follows that

g5(c) > g4(c) > g2(c) > g1(c) > g3(c). (60)

(ix) When 1 + b < c < +∞, it follows that

g5(c) > g1(c) > g3(c), (61)

and g2(c), g4(c) have no definition.

From the discussion above, we draw the figures
of g = gi(c) (i = 1 − 5) as in Fig. 5.

Fig. 5. The bifurcation curves of systems (35) and (36).
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Next, we will study the phase portraits of sys-
tem (35) on the curves g = gj(c) (j = 2, 3, 4) and
use some special orbits of the phase portraits to
derive our main results.

4. The Derivations for the Main
Results

In this section, we will derive our main results on
three bifurcation curves g2(c), g3(c) and g4(c). Our
derivation will be given under the following three
cases:

Case 1. 0 < c < 1 + b and g = g2(c).

Case 2. 0 < c < 4(1 + b)/(4 + 2b + b2) and
g = g3(c).

Case 3. 0 < c < 1 + b and g = g4(c).

4.1. The derivations under Case 1

For Case 1, that is, 0 < c < 1+b and g = g2(c), sys-
tem (35) has three singular points (ϕ◦

1, 0), (ϕ−
1 , 0)

and (ϕ+
1 , 0) where

ϕ◦
1 =

−bc − Ω
b(1 + b)

, (62)

ϕ−
1 =

bc + Ω −
√

3bc(b + 3b2 + 2c − 2 − 2Ω)
2b(1 + b)

,

(63)

ϕ+
1 =

bc + Ω +
√

3bc(b + 3b2 + 2c − 2 − 2Ω)
2b(1 + b)

.

(64)

In (42) letting ϕ = c, it follows that h = 0.
Thus substituting g = g2(c) into (37) and solving
equation

a3(ϕ − c) + a2(ϕ − c)2 + a1(ϕ − c) + a0 = 0, (65)

we get three roots c, ϕ◦
1 and ϕ◦

2, where

ϕ◦
2 =

−bc + 2Ω
b(1 + b)

. (66)

It is easy to see that ϕ±
1 , ϕ◦

1 and ϕ◦
2 satisfy the

following inequalities:

ϕ◦
1 < ϕ−

1 < c < ϕ+
1 < ϕ◦

2

for 0 < c <
4(1 + b)

4 + 2b + b2
, (67)

ϕ◦
1 < ϕ−

1 < ϕ+
1 = ϕ◦

2 = c

for c =
4(1 + b)

4 + 2b + b2
, (68)

and

ϕ◦
1 < ϕ−

1 < ϕ◦
2 < ϕ+

1 < c

for
4(1 + b)

4 + 2b + b2
< c < 1 + b. (69)

Let Γ(ϕ◦
2) denote the orbit passing through the

point (ϕ◦
2, 0). From Fig. 4, (50) and (67)–(69), we

see that (ϕ◦
1, 0) is a center, (ϕ−

1 , 0) is a saddle, and
the properties of (ϕ+

1 , 0) are as follows:

(i) When 0 < c < 4(1 + b)/(4 + 2b + b2), (ϕ+
1 , 0)

is a saddle. The phase portrait and the location
of the orbit Γ(ϕ◦

2) are shown in Fig. 6(a).
(ii) When c = 4(1 + b)/(4 + 2b + b2), (ϕ+

1 , 0) is a
degenerate singular point. The phase portrait
and the location of the orbit Γ(ϕ◦

2) are shown
in Fig. 6(b).

(iii) When 4(1 + b)/(4 + 2b + b2) < c < 1 + b,
(ϕ+

1 , 0) is a center. The phase portrait and
the location of the orbit Γ(ϕ◦

2) are shown in
Fig. 6(c).

From (42) and the analysis above, on ϕ–y plane
the orbit Γ(ϕ◦

2) has expression

y = ±
√

2(1 + b)
3(2 + b)

(ϕ − ϕ◦
1)

√
ϕ − ϕ◦

2. (70)

(a) (b) (c)

Fig. 6. The location of the orbit Γ(ϕ◦
2) when 0 < c < 1 + b and g = g2(c), (a) for 0 < c < 4(1 + b)/(4 + 2b + b2), (b) for

c = 4(1 + b)/(4 + 2b + b2), (c) for 4(1 + b)/(4 + 2b + b2) < c < 1 + b.
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Substituting (70) into the first equation of sys-
tem (35), it follows that

dϕ

(ϕ − ϕ◦
1)

√
ϕ − ϕ◦

2

= ±
√

2(1 + b)
3(2 + b)

dξ. (71)

Suppose ϕ(0) = +∞. From (71) we have∫ +∞

ϕ

ds

(s − ϕ◦
1)

√
s − ϕ◦

2

=

√
2(1 + b)
3(2 + b)

|ξ|. (72)

In (72) completing the integral and solving the
equation for ϕ, and noting that u = ϕ(ξ), we obtain
the trigonometric periodic singular wave solution
u4(ξ, c) as (12). Note that our derivation is available
for c = 1/(1 + b). Thus substituting c = 1/(1 + b)
into (12), we get u◦

4(x, t) as (28).

4.2. The derivations under Case 2

For Case 2, that is, 0 < c < 4(1 + b)/(4 +
2b+b2) and g = g3(c), system (35) has three singular
points (c, 0), (ϕ+

2 , 0) and (ϕ−
2 , 0), where

ϕ+
2 =

−(1 + b)c +
√

3(1 + b)(4 − c − bc)c
2(1 + b)

, (73)

and

ϕ−
2 =

−(1 + b)c − √
3(1 + b)(4 − c − bc)c

2(1 + b)
. (74)

Clearly, there are the following inequalities

ϕ−
2 < c < ϕ+

2 for 0 < c <
1

1 + b
, (75)

ϕ−
2 < c = ϕ+

2 for c =
1

1 + b
, (76)

and

ϕ−
2 < ϕ+

2 < c for
1

1 + b
< c <

4(1 + b)
4 + 2b + b2

. (77)

Note that ϕ = c is the singular line. Therefore,
(c, 0) is a degenerate singular point. (ϕ−

2 , 0) is a
center, and (ϕ+

2 , 0) is a saddle when c �= 1/(1 + b).
When c = 1/(1 + b), the saddle (ϕ+

2 , 0) and the
degenerate singular point (c, 0) coincide. In (42)
when ϕ = c, we have h = 0. Therefore, substitut-
ing h = 0 and g = g3(c) into (42) and solving the
equation H(ϕ, 0) = 0, we get three roots c, ϕ+

3 and
ϕ−

3 , where

ϕ+
3 =

−bc(4 + b) +
√

3bc(2 + b)(4 + 4b − 4c − 2bc − b2c)
2b(1 + b)

, (78)

and

ϕ−
3 =

−bc(4 + b) − √
3bc(2 + b)(4 + 4b − 4c − 2bc − b2c)

2b(1 + b)
. (79)

It is easy to check the following inequalities:

ϕ−
3 < ϕ−

2 < c < ϕ+
2 < ϕ+

3 for 0 < c <
1

1 + b
,

(80)

ϕ−
3 < ϕ−

2 < c = ϕ+
2 = ϕ+

3 for c =
1

1 + b
, (81)

and

ϕ−
3 < ϕ−

2 < ϕ+
3 < ϕ+

2 < c

for
1

1 + b
< c <

4(1 + b)
4 + 2b + b2

. (82)

These imply the following information:

(i) When 0 < c < 1/(1 + b), there is a spe-
cial closed orbit denoted by Γ1 which passes

through (ϕ−
3 , 0) and connects with the degen-

erate singular point (c, 0). And there is another
special orbit denoted by Γ2 which passes
through (ϕ+

3 , 0) [see Fig. 7(a)].
(ii) When c = 1/(1 + b), there is a special

closed orbit denoted by Γ3 which passes
through (ϕ−

3 , 0) and connects with (c, 0). And
there are other two orbits denoted by Γ−

4
and Γ+

4 which connect with (c, 0), too [see
Fig. 7(b)].

(iii) When 1/(1 + b) < c < 4(1 + b)/(4 + 2b +
b2), there is a special closed orbit denoted
by Γ5 which passes through (ϕ−

3 , 0) and
(ϕ+

3 , 0). And there are two special orbits
denoted by Γ±

6 which connect with (c, 0) [see
Fig. 7(c)].
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(a) (b) (c)

Fig. 7. The graphs of the special orbits when 0 < c < 4(1 + b)/(4 + 2b + b2) and g = g3(c), (a) for 0 < c < 1/(1 + b), (b) for
c = 1/(1 + b), (c) for 1/(1 + b) < c < 4(1 + b)/(4 + 2b + b2).

On ϕ–y plane, these special orbits possess the
following expressions:

Γ1: y2 =
2(1 + b)
3(2 + b)

(ϕ+
3 − ϕ)(c − ϕ)(ϕ − ϕ−

3 ),

where ϕ−
3 ≤ ϕ < c < ϕ+

3 . (83)

Γ2: y2 =
2(1 + b)
3(2 + b)

(ϕ − ϕ+
3 )(ϕ − c)(ϕ − ϕ−

3 ),

where ϕ−
3 < c < ϕ+

3 < ϕ. (84)

Γ3: y2 =
2(1 + b)
3(2 + b)

(c − ϕ)2(ϕ − ϕ−
3 ),

where ϕ−
3 ≤ ϕ < c. (85)

Γ±
4 : y = ±

√
2(1 + b)
3(2 + b)

(ϕ − c)
√

ϕ − ϕ−
3 ,

where ϕ−
3 < c < ϕ. (86)

Γ5: y2 =
2(1 + b)
3(2 + b)

(c − ϕ)(ϕ+
3 − ϕ)(ϕ − ϕ−

3 ),

where ϕ−
3 < ϕ < ϕ+

3 < c. (87)

Γ±
6 : y = ±

√
2(1 + b)
3(2 + b)

√
(ϕ − c)(ϕ − ϕ+

3 )(ϕ − ϕ−
3 ),

where ϕ−
3 < ϕ+

3 < c < ϕ.

(88)

Substituting these expressions into the first
equation of system (35) and integrating them
respectively, it yields that∫ ϕ

ϕ−
3

ds√
(ϕ+

3 − s)(c − s)(s − ϕ−
3 )

=

√
2(1 + b)
3(2 + b)

|ξ| (along the orbit Γ1), (89)

where 0 < c < 1/(1 + b) and ϕ−
3 < ϕ ≤ c < ϕ+

3 .∫ ∞

ϕ

ds√
(s − ϕ+

3 )(s − c)(s − ϕ−
3 )

=

√
2(1 + b)
3(2 + b)

|ξ| (along the orbit Γ2), (90)

where 0 < c < 1/(1 + b) and ϕ−
3 < c < ϕ+

3 ≤
ϕ < ∞.∫ ϕ

ϕ−
3

ds

(c − s)
√

(s − ϕ−
3 )

=

√
2(1 + b)
3(2 + b)

|ξ| (along the orbit Γ3), (91)

and∫ ∞

ϕ

ds

(s − c)
√

(s − ϕ−
3 )

=

√
2(1 + b)
3(2 + b)

|ξ| (along the orbit Γ±
4 ), (92)

where c = 1/(1 + b).∫ ϕ

ϕ−
3

ds√
(c − s)(ϕ+

3 − s)(s − ϕ−
3 )

=

√
2(1 + b)
3(2 + b)

|ξ| (along the orbit Γ5), (93)

where 1/(1 + b) < c < 4(1 + b)/(4 + 2b + b2) and
ϕ−

3 < ϕ ≤ ϕ+
3 < c.∫ ∞

ϕ

ds√
(s − c)(s − ϕ+

3 )(s − ϕ−
3 )

=

√
2(1 + b)
3(2 + b)

|ξ| (along the orbit Γ±
6 ), (94)
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where 1/(1 + b) < c < 4(1 + b)/(4 + 2b + b2) and
ϕ−

3 < ϕ+
3 < c ≤ ϕ < ∞.

In (89) and (93) completing the integrals and
solving the equations for ϕ, and noting that u =
ϕ(ξ), we get the elliptic smooth periodic wave solu-
tion u5(ξ, c) given as (16).

Similarly, via (90) and (94), we obtain the ellip-
tic periodic singular wave solution u6(ξ, c) given
as (17). Via (91) we get the smooth solitary wave
solution u◦

1(x, t) given as (26). Via (92) we get
the hyperbolic singular wave solution u◦

3(x, t) given
as (27).

4.3. The derivations under Case 3

Case 3, that is, 0 < c < 1 + b, and g = g4(c),
system (35) has three singular points (ϕ+

4 , 0),
(ϕ◦

3, 0) and (ϕ−
4 , 0), where

ϕ±
4 =

bc − Ω ± √
3bc(b + 3b2 − 2 + 2c + 2Ω)

2b(1 + b)

and

ϕ◦
3 =

Ω − 3bc
b(1 + b)

.

It is easy to check that ϕ+
4 , ϕ◦

3 and ϕ−
4 satisfy

the following inequalities

ϕ−
4 < c < ϕ+

4 < ϕ◦
3 for 0 < c <

1
1 + b

, (95)

ϕ−
4 < ϕ◦

3 = ϕ+
4 = c for c =

1
1 + b

, (96)

and

ϕ−
4 < ϕ◦

3 < ϕ+
4 < c for

1
1 + b

< c < 1 + b. (97)

From Fig. 4, (50) and (95)–(97) we see the
following facts:

(i) When 0 < c < 1 + b and c �= 1/(1 + b), (ϕ−
4 , 0)

and (ϕ+
4 , 0) are two centers. (ϕ◦

3, 0) is a saddle.
(ii) When c = 1/(1 + b), the center (ϕ−

4 , 0) and the
saddle (ϕ◦

3, 0) persist. The center (ϕ+
4 , 0) disap-

pears. Let

ϕ◦
4 = − bc + 2Ω

b(1 + b)
, (98)

and

y∗0 =

√
2c[(2 + b)(−c − 3b + 3c + 2bc + b2c)bc + 2(1 + b − c)Ω]√

3b(1 + b)
. (99)

Assume that (ϕ0, 0) is an initial point of system
(35). We discuss some special orbits as follows.

(1) When the wave speed c satisfies 0 < c <
1/(1 + b), we have:

(i) If ϕ−
4 < ϕ0 < c, then the orbit passing (ϕ0, 0)

is a periodic orbit. As ϕ0 → c − 0, the peri-
odic orbit tends to a closed orbit denoted by
Γ7 which is composed of a line segment ϕ = c

and an arc connecting the three points (ϕ◦
4, 0),

(c,−y∗0) and (c, y∗0) [see Fig. 8(a)].
(ii) If c < ϕ0 < ϕ+

4 , then the orbit passing (ϕ0, 0)
is a periodic orbit. As ϕ0 → c + 0, the peri-
odic orbit tends to a closed orbit denoted by
Γ8 which is composed of a line segment ϕ = c
and an arc connecting the three points (ϕ◦

3, 0),
(0, y∗0) and (0,−y∗0) [see Fig. 8(b)].

(iii) If ϕ0 = ϕ◦
3, then there are three orbits con-

necting to the point (ϕ◦
3, 0). These orbits are

(a) (b) (c)

Fig. 8. The graphs of the orbits Γi (i = 7 − 9), Γ+
10, and Γ−

10 when 0 < c < 1/(1 + b) and g = g4(c). (a) The limit orbit Γ7

of the periodic orbit passing (ϕ0, 0) when ϕ−
4 < ϕ0 < c and ϕ0 → c − 0. (b) The limit orbit Γ8 of the periodic orbit passing

through (ϕ0, 0) when c < ϕ0 < ϕ+
4 and ϕ0 → c + 0. (c) The orbits Γ9, Γ+

10 and Γ−
10 connecting to (ϕ◦

3, 0).
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the homoclinic orbit denoted by Γ9, the he-
teroclinic orbits denoted by Γ+

10 and Γ−
10 respec-

tively [see Fig. 8(c)].

(2) When the wave speed c satisfies 1/(1 + b) < c <
1 + b, we have:

(i) If ϕ−
4 < ϕ0 < ϕ◦

3, then the orbit passing
through (ϕ0, 0) is a periodic orbit. When ϕ0 →
ϕ◦

3 − 0, the periodic orbit tends to a closed
orbit denoted by Γ11 which connects with two
points (ϕ◦

3, 0) and (ϕ◦
4, 0) [see Fig. 9(a)].

(ii) If ϕ◦
3 < ϕ0 < ϕ+

4 , then the orbit passing (ϕ0, 0)
is a periodic orbit. When ϕ0 → ϕ◦

3 + 0, the
periodic orbit tends to a closed orbit denoted
by Γ12 which is composed of a line segment
ϕ = c and an arc connecting the three points
(ϕ◦

3, 0), (c, y∗0) and (c,−y∗0) [see Fig. 9(b)].
(iii) If ϕ0 = ϕ◦

3, then there are four orbits connect-
ing to the point (ϕ◦

3, 0). These orbits are the
homoclinic orbits Γ11 and Γ12, the heteroclinic
orbits denoted by Γ+

13 and Γ−
13 respectively [see

Fig. 9(c)].

From Figs. 8 and 9 we see that these orbits pos-
sess the same expression

y2 =
2(1 + b)
3(2 + b)

(ϕ − ϕ◦
3)

2(ϕ − ϕ◦
4) (100)

except the definition intervals.
Substituting (100) into the first equation of sys-

tem (35) and respectively integrating it along these
orbits above, it follows that∫ ϕ

ϕ◦
4

ds

(ϕ◦
3 − s)

√
s − ϕ◦

4

=

√
2(1 + b)
3(2 + b)

|ξ| (along the orbits Γ9 or Γ11),

(101)

∫ c

ϕ

ds

(s − ϕ◦
3)

√
s − ϕ◦

4

=

√
2(1 + b)
3(2 + b)

|ξ| (along the orbits Γ8 or Γ12),

(102)

and∫ +∞

ϕ

ds

(s − ϕ◦
3)

√
s − ϕ◦

4

=

√
2(1 + b)
3(2 + b)

|ξ| (along the orbits Γ±
10 or Γ±

13).

(103)

From (101) we get the hyperbolic smooth soli-
tary wave solution u1(ξ, c) given as (9). Via (102) we
obtain the hyperbolic peakon wave solution u2(ξ, c)
as (10). Via (103) we have the hyperbolic singular
wave solution u3(ξ, c) as (11).

In Secs. 4.1–4.3, we have given derivations for
the solutions ui(ξ, c) (i = 1 − 6) and u◦

1(x, t),
u◦

2(x, t), u◦
4(x, t). Also we have tested their cor-

rectness by using the software Mathematica (see
Remark 3). Hence, we have completed the proof for
Propositions 1–3. Next we will prove Proposition 4.

4.4. The proof of Proposition 4

Now we prove Proposition 4. Firstly, when c →
1/(1 + b), it follows that

p → b(2 + b)
1 + b

, (104)

α → 1√
2(1 + b)

, (105)

2bc + b2c − p → 0, (106)

(a) (b) (c)

Fig. 9. The graphs of the orbits Γi (i = 11, 12), and Γ+
13, Γ−

13 when 1/(1 + b) < c < 1 + b and g = g4(c). (a) The limit orbit

Γ11 of the periodic orbit passing (ϕ0, 0) when ϕ−
4 < ϕ0 < ϕ◦

3 and ϕ0 → ϕ◦
3 − 0. (b) The limit orbit Γ12 of the periodic orbit

passing through (ϕ0, 0) when ϕ◦
3 < ϕ0 < ϕ+

4 and ϕ0 → ϕ◦
3 + 0. (c) The orbits Γ11, Γ12, Γ+

13 and Γ−
13 connecting to (ϕ◦

3, 0).
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a1 → − 5 + 2b
(1 + b)2

, (107)

a2 → 3(2 + b)
(1 + b)2

, (108)

a3 → 3(2 + b)
(1 + b)2

, (109)

β → 1√
2(1 + b)

, (110)

γ → 1√
2(1 + b)

, (111)

ki → 1 (i = 1, 2), (112)

sn(v, 1) = tanh v, (113)

1 − tanh2v = sech2v, (114)

and

tanh−2v − 1 = csch2v. (115)

Therefore, in (9)–(12) and (16)–(17) letting
c → 1/(1 + b) and using the limit values, from
the equations above, we get Properties (i)–(vi) in
Proposition 4.

Secondly, when c → 4(1 + b)/(4 + 2b + b2), it
follows that

a1 → − 2(1 + b)
4 + 2b + b2

, (116)

a2 → − 6(2 + b)
4 + 2b + b2

, (117)

a3 → 0, (118)

r →
√

1 + b

4 + 2b + b2
, (119)

k2 → 0, (120)

sn(v, 0) = sin v. (121)

Thus in (16) and (17) letting c →
4(1 + b)/(4 + 2b + b2), we get Properties (vii)
and (viii).

Finally, note that when c → 1 + b, it follows
that p → 0 and α → 0. Therefore in (9)–(22) letting
c → 1 + b, we see that ui(ξ, c) → −1 (i = 1, 2, 3, 4).
Hereto, we have completed the proof for our main
results.

5. Conclusion

In this paper, for parameter b > 1 and constant
wave speed c, we have studied the coexistence
of multifarious exact nonlinear wave solutions for
Eq. (4). Note the following facts:

(i) In [He et al., 2008a, 2008b; Khuri, 2005; Liu &
Guo, 2008; Liu & Ouyang, 2007; Liu & Pan,
2009; Liu & Qian, 2001; Shen & Xu, 2005;
Tian & Song, 2004; Wang & Tang, 2008;
Yomba, 2008a, 2008b; Zhang et al., 2007], the
authors investigated the nonlinear wave solu-
tions when b = 2 or b = 3.

(ii) In [Wazwaz, 2007], the solitary wave solutions
were studied for a special wave speed c =
(2 + b)/2.

(iii) In [Liu, 2010], the study was based on three
special wave speeds c = 1/(1 + b), or c =
(2 + b)/2, or c = 1 + b.

Therefore, our work includes many previous
results.

In Sec. 4, we obtained the bifurcation phase
portraits on three bifurcation curves g = gi(c)
(i = 2, 3, 4). Using a similar method, we obtained all
bifurcation phase portraits on c–g plane for c > 0
(for c ≤ 0, system (35) has a unique singular point)
as in Fig. 10.

From Fig. 10 and previous results, we have the
following conjectures:

Conjectures 1. When b > 1 and the wave speed
c = 1/(1 + b) or c > 1 + b, Eq. (4 ) has no peakon
wave solution.

Conjectures 2. When the wave speed c ≥ 1 + b,
Eq. (4 ) has no explicit smooth solitary wave
solution.

Conjectures 3. When the wave speed c �= 1 + b,
Eq. (4 ) has no fractional solution.

Some questions also remain as follows.

Questions 1. Our derivations were based on b > 1.
However, substituting the expressions of the solu-
tions into Eq. (4 ) directly, we see the following
facts: (i) From (6 )–(25 ), for b > 0, ui(ξ, c) (i =
1 − 6) are still the real solutions. (ii) Via (26 )–
(31 ), for b > −1, u◦

1(x, t), u◦
3(x, t), u◦

4(x, t), u7(x, t),
u8(x, t), and u9(x, t) are still the real solutions. (iii)
u8(x, t) is still a real solution for b �= −1. But for
b ≤ 1, we do not know how to derive these expres-
sions mentioned above.
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Fig. 10. The bifurcation phase portraits of systems (35) and (36), where the two systems have the same topological phase
portraits except the line ϕ = c.

Questions 2. From Liu [2010] we know that for b > −2 and b �= −1,

u∗
2(x, t) =

3(2 + b)(2 + 3b + b2)

2(1 + b)
[√

3(2 + b) cosh
1
2

(
x − 2 + b

2
t

)
+

√
8 + 6b + b2 sinh

1
2

∣∣∣∣x − 2 + b

2
t

∣∣∣∣
]2

is a real solution of Eq. (4 ). And for b �= −1, Eq. (4 )
has three real solutions

u∗
1(x, t) = −3(2 + b)

2(1 + b)
sech2 1

2

(
x − 2 + b

2
t

)
,

u∗
3(x, t) =

3(2 + b)
2(1 + b)

csch2 1
2

(
x − 2 + b

2
t

)
,

and u8(x, t) given as (30 ).
For b < −1, we do not know whether there

is any other explicit real solution except u∗
i (x, t),

(i = 1, 2, 3) and u8(x, t).
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