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Abstract

The critical point or pivotal threshold of cell transition occurs in early embryonic development when cell differentiation culminates
in its transition to specific cell fates, at which the cell population undergoes an abrupt and qualitative shift. Revealing such critical
points of cell transitions can track cellular heterogeneity and shed light on the molecular mechanisms of cell differentiation. However,
precise detection of critical state transitions proves challenging when relying on single-cell RNA sequencing data due to their inherent
sparsity, noise, and heterogeneity. In this study, diverging from conventional methods like differential gene analysis or static techniques
that emphasize classification of cell types, an innovative computational approach, single-cell gene association entropy (SGAE), is
designed for the analysis of single-cell RNA-seq data and utilizes gene association information to reveal critical states of cell transitions.
More specifically, through the translation of gene expression data into local SGAE scores, the proposed SGAE can serve as an index
to quantitatively assess the resilience and critical properties of genetic regulatory networks, consequently detecting the signal of
cell transitions. Analyses of five single-cell datasets for embryonic development demonstrate that the SGAE method achieves better
performance in facilitating the characterization of a critical phase transition compared with other existing methods. Moreover, the
SGAE value can effectively discriminate cellular heterogeneity over time and performs well in the temporal clustering of cells. Besides,
biological functional analysis also indicates the effectiveness of the proposed approach.

Keywords: critical transition; single-cell gene association entropy (SGAE); dynamic network biomarker (DNB); cell differentiation; cell
fate transition

INTRODUCTION
Many early developmental processes involve a cell fate transition
or critical state of cell transition, with a considerable and qualita-
tive alteration occurring [1, 2]. From a dynamics perspective, early
embryonic development is commonly interpreted as a dynami-
cally evolving system over time, characterized by three distinct
states: a stable and robust before-transition state, a highly sensi-
tive and unstable critical states of cell transitions, and another
stable after-transition state (Figure 1A) [3–5]. The detection of
this critical state transition in embryonic development [6, 7] has
garnered increasing attention, as it offers valuable insights into
the biological mechanisms underlying potentially patient-specific
tissue regeneration [8] and disease modeling [9]. However, it is
considerable challenging to characterize bioprocess dynamics
and effectively capture the signal that indicates cell fate transition
from single-cell data because of the inherent sparsity, noise and
heterogeneity characteristic of such data. Current approaches

primarily concentrate on analyses of gene expression levels [6,
7], but single-cell expression data may provide deeper insights
into gene–gene associations. Compared with the single-cell gene-
expression pattern, gene–gene associations have demonstrated
more consistent ability to characterize the biological processes or
heterogeneity of cell populations [10, 11].

In this research, considering gene associations within the cell-
specific network, we introduce a computational approach known
as SGAE to discern the critical signals accountable for cell tran-
sitions in embryonic development. Specifically, there are three
main procedures in the proposed method: the construction of
cell-specific networks using a statistical dependency index, the
calculation of a local SGAE for each localized network, and the
detection of the critical states of cell transitions by employing the
SGAE index (Figure 1B and C). Notably, such an approach enables
the transformation of the inherently ‘unstable’ single-cell gene
expression matrix into a comparatively ‘stable’ SGAE matrix.
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This SGAE matrix can be seamlessly substituted for the origi-
nal expression matrix, allowing for the application of traditional
scRNA-seq analysis like reducing dimensions and clustering cells.
By capturing dynamic information from gene associations on
the single-cell scale, SGAE can reveal a dynamic shift in cellular
heterogeneity over time. In this study, five single-cell datasets for
embryonic development are employed to validate our method,
which indicates that the predicted critical states of cell transitions
are in accordance with experimental observations. Thus, SGAE
serves as a framework for analyzing scRNA-seq data and provides
a quantitative approach to track the changes in biological systems
over time using network entropy.

MATERIALS AND METHODS
Theoretical background
In the early phases of embryonic development, cell differenti-
ation encompasses critical states of cell transitions [12]. This
process is considered a complex dynamic system, where cell
state transition is recognized a state shift occurring at the point
of bifurcation [2]. The dynamic course of embryonic develop-
ment can be partitioned into three phases or states (depicted in
Figure 1A): a highly stable before-transition state, an unstable a
critical phase denoting cell fate transition, and a subsequent after-
transition state marked by heightened stability. In the vicinity of
the dynamic system’s critical state, a set of closely associated
dynamical network biomarkers (DNBs) emerges, exhibiting sig-
nificant fluctuations in collective behavior [3]. By leveraging the
dynamic information of gene–gene associations within this set of
variables, it is possible to predict the critical signal of a drastic or
qualitative state.

To explore and measure the dynamic alterations in gene–gene
associations, the mutual information defined as Equation (1) can
be applied to quantify the statistical dependency between pairs of
genes.

I (X, Y) =
∑

x∈X,y∈Y

p
(
x, y

)
log

p
(
x, y

)

p(x)p(y)
, (1)

where p(x) and p(y), denoted as a marginal probability distri-
bution, corresponds to the probability distribution of genes X
and Y respectively, whereas p

(
x, y

)
, labeled as a joint probability

distribution, characterizes their combined probabilities. In this
study, to determine gene–gene associations and construct cell-
specific networks at the single-cell level, a statistical dependency
index (as presented in Equation (3)) is developed using numeri-
cally estimated probability distributions based on frequency [11].
A positive statistical dependency value indicates a statistically
significant correlation between gene pairs, implying the presence
of an edge between them (Figure S1). The relationship between
the entropy H(X) of X, the conditional entropy H (X|Y) of X given
Y, and the mutual information I (X, Y) of X and Y allows for the
representation of H(X) using H (X|Y) and I (X, Y), as shown in the
following formula (refer to Supplementary Information A for the
derivation process).

H(X) = I (X, Y) + H (X|Y) . (2)

For a certain local network/subnetwork, as seen easily from
Equation (2), the entropy of the central node is dependent on
the contribution from the strength of the association with its
connecting or neighboring nodes.

An algorithm for capturing the critical state of
cell transition utilizing SGAE
Based on the single-cell expression data with temporal informa-
tion, the SGAE procedure is utilized to reveal the critical state
of cell transition, and its specific implementation steps are as
follows:

[Step 1] Normalization of single-cell expression data. For each
specific time point, the general methodology log–transformation
is carried out to normalize the initial gene expression matrix
of size M (rows) × N (columns), where rows signify genes and
columns depict cells.

[Step 2] Construction of a statistical dependency index I(k)
x,y. The

detailed process is described as follows: (i) For each gene pair(
gx, gy

)
, scatter plots are constructed in a cartesian coordinate

system where the gx–axes and gy–axes correspond to the expres-
sion values of these two genes across N cells. Notably, each point
within the scatter plot represents a cell, with its gx-coordinate
denoted as E(k)

x (representing the expression of gx in cell Ck), and
its gy-coordinate indicated as E(k)

y (reflecting the expression of
gy in cell Ck). A total of M (M − 1) /2 scatter plots are generated
by plotting a scatter plot for each gene pair (as illustrated in
Figure 1B). (ii) Within the scatter plot of the gene pair

(
gx, gy

)
,

near the specific cell Ck, we designate the brown and blue boxes
as representing the neighborhood of E(k)

x and E(k)
y based on the

preset parameter n(k) (Ex) = 0.1N (the point/cell count in the green
box) and n(k)

(
Ey

) = 0.1N (the point/cell count in the blue box),
respectively. We have conducted an analysis on the critical signal
for cell transition when the parameter n(k) (Ex) varies. It can be
seen from Figure S2 that the preset parameter n(k) (Ex)within a
certain range has negligible impact on the evolutionary trend
of the signal curve. The red box signifies the overlap between
two mentioned boxes, with the count of points/cells represented
by n(k)

(
Ex, Ey

)
. (iii) The construction of the statistical dependency

indexI(k)
x,y is achieved through the utilization of the three aforemen-

tioned statistics, namely n(k) (Ex), n(k)
(
Ey

)
, and n(k)

(
Ex, Ey

)
.

I(k)
x,y = n(k)

(
Ex, Ey

)

N
log

n(k)(Ex ,Ey)
N

n(k)(Ex)

N · n(k)(Ey)
N

, (3)

[Step 3] Construction of a cell-specific network tailored to
each individual cell. By employing the statistical dependency
index I(k)

x,y as depicted in Equation (3), we construct a cell-specific
network N(k) tailored to cell Ck, where genes are represented as
nodes, and the connections between these nodes are defined by
gene–gene associations indicated by the dependency indicator I(k)

x,y.
Specifically, the gene–gene association (an edge) exists between
gx and gy in cell Ck if I(k)

x,y is a positive value; otherwise, there
is not an edge between gx and gy. Then, the construction of
the cell-specific network N(k) tailored to cellCk follows this way:
(see Supplementary Information B for the specific construction
process).

[Step 4] Extraction of each local network from a cell-specific
network. Specifically, focusing on cell Ck, the cell-specific network
N(k) is composed of M local networks LN(k)

x (x = 1, 2, 3, . . . , M), each
of which is identified by a specific gene (i.e. one gene for one local
network). Each local networkLN(k)

x is represented as a subnetwork
centered at a gene gx, with Q edges representing its 1st-order

neighbors
{
gx

1, gx
2, . . . , gx

Q

}
.

[Step 5] Calculation of the distinct local SGAE value H(k)
x . Based

on Equation (2) above, the calculation of the SGAE value H(k)
x for a
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Figure 1. Schematic illustration of the proposed SGAE method for revealing critical states of cell transitions. (A) Complex biological systems can be
broadly categorized into three states: a stable and robust before-transition state, a highly sensitive and unstable critical state at which an abrupt
and qualitative shift occurs, and another stable after-transition state. (B) Infer gene-gene association (an edge) between gene pairs with the statistical

dependency index I(k)
x,y, and then construct the cell-specific network N(k) for cell Ck. The local SGAE value is calculated for each localized network

extracted from the cell-specific network. (C) The critical state of cell transition can be indicated by the abrupt increase of SGAE. There is no obvious
change in SGAE when the system is in a before-transition state; however, when the system is close to the critical state, SGAE increases significantly.

localized network LN(k)
x centered on gene gx is performed as below.

H(k)
x = EI(k)

xy + EH(k)
x|y, (4)

with

EI(k)
xy = 1

Q

∑Q

y=1
pxy log

pxy

px· py
(5)

and

EH(k)
x|y = − 1

Q

∑Q

y=1
pxy log px|y,

where the probability distributions can be estimated by statistical
analysis as follows:

px ≈ n(k) (Ex)

N
, (6)

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/6/bbad366/7313455 by Zhejiang U

niversity user on 22 O
ctober 2023



4 | Zhong et al.

py ≈ n(k)
(
Ey

)

N
,

pxy ≈ n(k)
(
Ex, Ey

)

N
,

px|y ≈ n(k)
(
Ex, Ey

)

n(k)
(
Ey

) .

Clearly, Equation (4) has the capability to convert the inherent
sparsity of the gene expression matrix of single-cell datasets into
a non-sparsity entropy matrix in light of gene–gene associations
(Figure 1B). Consequently, the local SGAE value H(k)

x is determined
by both the central gene’s expression within a local network and
that of its neighboring genes.

[Step 6] Calculation of the cell-specific SGAE value H(k)for each
cell. Given the cell Ck, the calculation of its cell-specific SGAE
valueH(k) relies on a gene cluster marked by the highest local SGAE
values, and the specific computation formula is as follows:

H(k) =
∑L

x=1
H(k)

x , (7)

where the constant L indicates the count of genes ranking in the
top 5% with highest local SGAE values. The pattern of signal curve
evolution remains consistent despite variations in the adjustable
parameter L, typically set within a range from the top 3% to 10%
(Figure S3). Moreover, the average of the cell-specific SGAE values
Ht (as indicated in Equation (8)) for each time point t is utilized to
capture the critical signal associated with cell transition.

Ht = 1
N

N∑
k=1

L∑
x=1

H(k)
x , (8)

Close to the critical point, there is a noticeable collective fluc-
tuation behavior among the signaling molecules or DNBs. This
leads to gene associations (dependent correlations) among DNBs
in a critical state, exhibiting substantial distinctions from those
observed in a before-transition state. Consequently, upon nearing
the critical state, the SGAE index Ht shows a sudden increase.

[Step 7] Identification of the critical state based on the one-
sample t test. For the purpose of assessing the capability of the
SGAE Ht in capturing the critical signal, a one-sample t test [13]
is implemented to ascertain whether the critical state signifi-
cantly differs from the before-transition state. As represented
in Equation (9), we employ the statistic TS to evaluate whether
a significant distinction exists between the constant z and the
average of the vector Z = (z1, z2, · · · , zn).

TS = √
n

mean(Z) − z
SD(Z)

, (9)

where mean(Z) stands for the average of vector Z, while SD(Z)

denotes its standard deviation. Subsequently, the calculation of
the P value for statistic TS is performed to evaluate the statistical
significance between mean(Z) and z. Statistical significance is
attained when the P value < 0.05; otherwise, it implies a lack
of significant difference. Thus, a time point t is deemed a criti-
cal state when the SGAE index Ht achieves these two specified
requirements: (i) Ht>Ht−1 and (ii) Ht exhibits a statistical dif-
ference (P value< 0.05) compared to the prior values (refer to
Supplementary Information C for a detailed description).

Data sources and functional analysis
The SGAE method approach was implemented in five distinct
single-cell datasets related to embryonic developmental pro-
cesses, encompassing the transition from mouse hepatoblast cell
(MHC) to hepatocyte and cholangiocyte cell (HCC) (MHC-to-HCC;
ID: GSE90047), epithelial basal cell (EBC) to mouse hair follicle
(MHF) (EBC-to-MHF; ID: GSE147372), inner cell mass (ICM) to
visceral endoderm cell (VEC) (ICM-to-VEC; ID: GSE100597), human
prefrontal cortex (HPC) to neuron (HPC-to- neuron; ID: GSE104276)
and neural progenitor cell (NPC) to neuron (NPC-to-neuron;
ID: GSE102066). Comprehensive information regarding these
datasets is provided in Supplementary Information D. Functional
enrichment analysis was conducted based on the Metascape
online tool [14] and ClusterProfiler package [15]. The pathway-
related information can be found in the Kyoto Encyclopedia of
Genes and Genomes (KEGG) (https://www.kegg.jp/).

RESULTS
Revealing the critical state of cell transition
To demonstrate how the proposed SGAE works, we implemented
it on five distinct single-cell datasets associated with embryonic
developmental processes, i.e. MHC-to-HCC data [16], EBC-to-MHF
data [17], ICM-to-VEC data [18], HPC-to-neuron data [19] and NPC-
to-neuron data [20]. The cell-specific SGAE value for each single
cell was calculated using Equation (7) defined in the Methods
section. The mean cell-specific SGAE value was utilized to detect
any possible critical states of cell transitions at a specific time
point. The SGAE approach effectively pinpointed cell fate tran-
sitions in embryonic development across all datasets, thereby
validating the accuracy and effectiveness of our method. The
algorithm’s source code is freely available at https://github.com/
zhongjiayuan-fs/SGAE-project.

For the MHC-to-HCC data, the red curve in Figure 2A clearly
displays a notable upsurge in the mean SGAE value at embryonic
day 12.5 (E12.5) (P = 0.0229), which serves as an indicator of
an impending cell fate transition, aligning with the findings of
original experiment that hepatoblasts differentiate into hepato-
cytes and cholangiocytes after E12.5 [16]. Furthermore, a box plot
depicting the cell-specific SGAE values is provided for each time
point, showcasing the resilience of our proposed approach. As
shown by the red box plot of the SGAE value in Figure 2A, a clear
critical transition signal can be seen in the median values, indicat-
ing that the SGAE value is highly robust to sample noise. For each
cell, the average expression of the highest 5% of genes ranked by
expression value was employed to analyze the dynamic changes.
Unlike the SGAE value, the gene expression fails to provide early
indication of cell fate transition (the green curve in Figure 2A).
In the case of the EBC-to-MHF data, the mean SGAE value (the
red curve in Figure 2B) abruptly increases from embryonic day 13
(E13) to embryonic day 13.5 (E13.5) (P = 3.1741E − 12), after which
epithelial basal cells were guided to differentiate into hair follicle
stem cells [17]. Additionally, the robustness of the SGAE method
in pinpointing the tipping point of cell transitions is highlighted
by the median values shown in the red box plot of the SGAE value
in Figure 2B. However, in the context of gene expression, the green
curve in Figure 2B demonstrates no significant variation among
the six time points. When applied to the ICM-to-VEC data, the
statistical significance (P = 0.0436) is indicated by the red curve
in Figure 2C, revealing a commitment to a visceral endoderm
fate after embryonic day 4.5 (E4.5) [18]. Moreover, the median
values depicted by the red box plot of the SGAE value in Figure 2C
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Figure 2. Revealing the critical state of cell transition. The performance of dynamic changes between the SGAE and gene expression for five single-cell
datasets of embryonic differentiation: (A) MHC-to-HCC data, (B) EBC-to-MHF data, (C) ICM-to-VEC data, (D) HPC-to-neuron data, and (E) NPC-to-neuron
data. The dynamic change performance between SGAE and other existing critical transition detection methods across five datasets: (F) MHC-to-HCC
data, (G) EBC-to-MHF data, (H) ICM-to-VEC data, (I) HPC-to-neuron data, and (J) NPC-to-neuron data.

obviously show a critical signal at E4.5 as well. However, when
considering gene expression, there is no significant difference
(the green curve in Figure 2C). For the HPC-to-neuron data,
as indicated by the red curve in Figure 2D, mean SGAE value
experiences a dramatic increase from 12 weeks to 13 weeks
(P = 7.6578E − 22), after which neurons from the prefrontal
cortex have been shown to increase expression of genes for
cell fate commitment [19]. Additionally, it is seen from the red
box plot of SGAE values in Figure 2D that the median values
stably exhibit a clear signal at the critical state (13 weeks).
Unlike the SGAE value, as demonstrated by the green curve
in Figure 2D, there is no indication of the cell fate transition

based on gene expression. Applying the SGAE to the NPC-
to-neuron data, the red curve in Figure 2E reveals significant
differences in the mean SGAE value at day 1 (P = 5.1688E − 10),
which supports the original experimental observation that the
heterogeneity of transcriptional state increased after day 1 and
reached the highest level of neuronal heterogeneity at day 30 [20].
In addition, as depicted in the red box plot of the SGAE value
in Figure 2E, the median values also pinpoint day 1 as a critical
point. However, as observed from the green curve in Figure 2E,
there is no significant difference from the perspective of gene
expression. Figure 2F-J demonstrates that our proposed method
exhibits satisfied performance in capturing critical signals of
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cell transitions compared to other existing critical transition
detection methods, such as biological tipping-point (BioTIP) [21],
single-sample landscape entropy [22], and single-sample network
module biomarkers (sNMB) [23]. The above results indicate that
our SGAE approach is capable of delivering more effective the
critical signal for cell transition during embryonic development.

Performing analyses for temporal clustering of
cells and dynamic evolution of the network
Beyond its role in pinpointing the critical transitions during
embryonic development, SGAE also enables the transformation
of the gene expression matrix into the SGAE matrix, which
provides a SGAE-based way to perform cell clustering analysis
for biological processes. At the identified critical state, a cluster
of genes, consisting of signaling genes (molecules ranking in the
top 5% for their highest local SGAE values) and low-entropy
genes (molecules ranking in the top 5% for their lowest local
SGAE values), was selected to carry out cell clustering analysis
using local SGAE values. For the MHC-to-HCC, NPC-to-neuron,
and ICM-to-VEC data, as presented in Figure 3A−C, SGAE-based
clustering analysis effectively distinguishes the cellular states
at different time points using t-distributed stochastic neighbor
embedding [24]. Uniform manifold approximation and projection
is also applied to carry out for the SGAE-based clustering analysis.
The results of the cluster analysis and an evaluation of their
clustering performance are given in Figure S4 of Supplementary
Information E. In addition, we utilize the landscape of the local
SGAE for signaling and non-signaling genes to depict the overall
dynamic shifts in network entropy. For the MHC-to-HCC data,
as illustrated in Figure 3D, an abrupt surge in the local SGAE
of signaling genes occurs at the critical state (E12.5). Similarly,
in the case of the NPC-to-neuron data, Figure 3E indicates a
notable peak in local SGAE for signaling genes at the critical
state (E4.5). For the ICM-to-VEC data, as depicted in Figure 3F,
a substantial increase is evident in the local SGAE values of
signaling genes at 13 weeks, indicating an upcoming critical
point of cell transition. Moreover, we map the signaling genes
onto the protein–protein interaction (PPI) network and extract
the largest connected subgraph to study how it dynamically
evolves at the network level. For the three mentioned embryonic
development datasets, as illustrated in Figure 3G−I, a noticeable
shift in the network structure is observable at the critical point.
The complete temporal evolution of the signaling-gene network is
presented in Figure S5 of Supplementary Information F. Therefore,
by exploiting the dynamic changes in gene–gene associations,
SGAE offers valuable insights into critical transition during early
embryonic development in terms of network dynamics.

Revealing the molecular signaling mechanism
underlying developmental process
Differential expression analysis is a valuable approach for iden-
tifying new drug targets and biomarkers. However, it often over-
looks non-differentially expressed genes (non-DEGs) that play
crucial roles in essential biological processes. These genes are
recognized for their significant roles in immune cell activity [25]
and are enriched in development-related functional pathways
[26]. In our study, genes are considered ‘dark genes’ when they
satisfy the following two conditions: (i) they show non-differential
expression based on expression levels and (ii) a notable difference
can be observed in the SGAE value levels between the critical state
and the non-critical state. By focusing on signaling genes (top
5% molecules with the highest local SGAE values), we compare
the changes in SGAE values and gene expression to discover

‘dark genes’. Figure 4 demonstrates some of the ‘dark genes’ from
the MHC-to-HCC, NPC-to-neuron, and ICM-to-VEC data, which
exhibit insignificant variations in gene expression but show sig-
nificant alterations in SGAE values. Other dark genes for these
three datasets, as well as for the EBC-to-MHF and HPC-to-neuron
data, can be found in Supplementary Information G. It has been
revealed that some dark genes are implicated in developmental
processes, suggesting their potential importance in embryonic
development. For the MHC-to-HCC, NPC-to-neuron, and ICM-to-
VEC data, the ‘dark genes’ related to embryonic development are
outlined in Tables 1, 2 and 3, respectively.

An analysis for KEGG pathway enrichment was conducted to
enhance our understanding of the biological roles of the dark
genes. For the NPC-to-neuron data and HPC-to-neuron data, as
shown in Figure 5A-B, we found that the enriched pathways asso-
ciated with the dark genes were closely related to embryonic
developmental processes, such as the FoxO signaling pathway
[27], Wnt signaling pathway [28], cell cycle [29], gap junction [30]
and oocyte meiosis [31]. There were seven common dark genes
shared between the above two human embryonic development
datasets (Figure S6). To investigate the potential regulatory mech-
anism involved in embryonic development on a network level,
we performed functional analysis on the protein–protein inter-
action (PPI) subnetwork composed of these common dark genes
(CDGs) and their 1st-order differentially expressed gene (DEG)
neighbors within the PPI network, which can be viewed as a CDG-
related network. The 1st-order DEG neighbors are characterized
by meeting two requirements: (i) they serve as the 1st-order
neighbors of common signaling genes within the PPI network
and (ii) they indicate statistically significant variations (P< 0.05)
in gene expression levels before and after the identified critical
state. From Figure 5C, it is evident that the CDG-related network
based on the NPC-to-neuron data comprises 7 CDGs and their
180 1st-order DEG neighbors. Notably, a significant change in
gene expression, transitioning from low to high or vice versa,
occurs after a critical transition. Furthermore, pathway enrich-
ment analysis highlights that the 1st-order DEG neighbors exhibit
enrichment in signaling pathways closely associated with embry-
onic development (Figure 5D-E). For the NPC-to-neuron data, the
functional analysis of signaling genes and 1st-order DEG neigh-
bors (Figure 5F) reveals insights into the underlying signaling
mechanism. The WNT pathway is known to have a significant
role in brain development [32]. Our method identifies a further
potential molecular driving axis for neuron development. Our
findings indicate that the long-range axis of action based on
WNT5A and FZD3 may exhibit spatiotemporal dynamics during
the transition from NPCs to neurons. Specifically, WNT5A is a 1st-
order DEG, and its expression is markedly downregulated in the
vicinity of the crucial point, suggesting that the signal is initiated
during this time. After WNT5A activates a variety of regulatory
and downstream receptors, the transcription factor TCF7L1 (a
signaling gene) is released by inhibiting CTNNB1 expression. It is
generally accepted that cell cycle inhibition is related to elevated
TCF7L1 expression [33–35]. In this particular dataset, cell cycle
inhibition and neural differentiation begin simultaneously [20].
These outcomes further substantiate the accuracy of the pathway
axis of action identified by our method.

DISCUSSION
The identification of cell fate decisions or critical states of cell
transitions holds significant biological and clinical importance. It
can contribute to the design of therapeutic strategies intended
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Figure 3. Temporal clustering of cells based on SGAE and dynamical evolution of the signaling-gene network. Based on the local SGAE values of the top
high- and low-entropy genes, the temporal clustering analysis is carried out for (A) MHC-to-HCC data, (B) NPC-to-neuron data, and (C) ICM-to-VEC data,
respectively. The landscape of the local SGAE is employed to demonstrate the dynamic changes of the network entropy from a global perspective for (D)
MHC-to-HCC data, (E) NPC-to-neuron data, and (F) ICM-to-VEC data, respectively. The dynamical evolution of the signaling-gene network is analyzed
for (G) MHC-to-HCC data, (H) NPC-to-neuron data, and (I) ICM-to-VEC data, respectively.

for personalized tissue regeneration and the construction
of differentiation-related disease models [36]. Most existing
computational methods for analyzing scRNA-seq data rely on
statistical measures (e.g. mean and variance) guided by gene
expression. However, characterizing the dynamic evolution of
complex biological systems using scRNA-seq data often presents
challenges due to the inherent sparsity and noise in single-
cell gene expression data. This study introduces a model-
free approach named SGAE to quantitatively leverage gene–
gene associations information and their dynamic changes at
the single-cell level, consequently revealing a critical state of
cell differentiation. For five single-cell datasets of embryonic
development, the proposed approach successfully identified their
corresponding critical states or cell fate decisions. Moreover,
SGAE transforms a sparse matrix of single-cell gene expressions

into a non-sparse matrix of gene–gene association entropy
values. This enables temporal clustering analysis based on SGAE
values, accurately distinguishing cellular heterogeneity over
time. Besides, our approach can detect some SGAE-sensitive
‘dark genes’ that hold significance in the biological processes
of embryonic development.

Overall, the proposed SGAE method offers several key advan-
tages as follows. First, in terms of analyzing dynamic changes,
SGAE represents a valuable tool for uncovering critical signals
during embryonic development at the single-cell level. It is capa-
ble of capturing critical signals of cell transitions and performs
better than other critical-transition detection methods. Addition-
ally, in conjunction with dynamic predictive techniques [37–39], it
holds the potential to forecast future critical states using omics
data. Second, SGAE performs well in cell clustering. It accurately
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Figure 4. The SGAE-sensitive “dark genes”. The local SGAE (top) and gene expression (bottom) of dark genes for (A) MHC-to-HCC data, (B) NPC-to-neuron
data, and (C) ICM-to-VEC data are provided.

Table 1. The information of important ‘dark genes’ in MHC-to-HCC data

Gene Location Family Relation with embryonic development PMID

Auts2 Nucleus Translation regulator Auts2 isoforms play an important role in regulating transcription
and neuronal differentiation

30 953 002

Ambp Cytoplasm Other Expression of the Ambp can affect
mouse embryogenesis

12 204 273

Bub3 Cytoplasm Enzyme Bub3 disruption reveals essential mitotic spindle checkpoint
function during early embryogenesis

10 995 385

Dkc1 Nucleus Enzyme Targeted disruption of Dkc1 can cause embryonic lethality in mice 12 400 016
Eif5a Cytoplasm Other Eif5a is related to the embryogenesis

and cell differentiation
20 458 750

Gdi2 Cytoplasm Regulatory Targeted disruption of Gdi2 causes early
embryonic lethality

35 689 892

Prmt7 Nucleus Enzyme PRMT7 is involved in regulation of germ cell proliferation during
embryonic stage

33 008 598

Serpina1a Cytoplasm Other Deletion of serpina1a can result in embryonic lethality 21 574 874

distinguishes cellular heterogeneity over time at the single-cell
level through clustering analysis based on SGAE values. Third,
SGAE helps uncover ‘dark genes’ that are sensitive to SGAE but
often overlooked by traditional differential expression analysis.

These genes are likely to play significant roles in key biolog-
ical processes [40]. Final, the proposed SGAE is a data-driven
method, and thus can view as a model-free process, eliminating
the need for selecting features or training the model/parameter.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/6/bbad366/7313455 by Zhejiang U

niversity user on 22 O
ctober 2023



Single-cell gene association entropy | 9

Figure 5. The molecular signaling mechanism underlying the developmental process. (A) KEGG pathway enrichment analysis for NPC-to-neuron data.
(B) KEGG pathway enrichment analysis for HPC-to-neuron data. (C) Dynamic changes of the CDG-related network based on NPC-to-neuron data, which
is composed of 7 CSGs and their 180 1st-order DEG neighbors. (D) KEGG pathway enrichment analysis for the above-mentioned 1st-order DEG neighbors.
(E) The expression patterns of these 1st-order DEG neighbors involved in different development-related pathways change significantly before and after
the critical transition. (F) The Wnt signaling pathway presents different regulatory patterns before and after the critical point, which plays an essential
role in the developmental process.
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Table 2. The information of important ‘dark genes’ in NPC-to-neuron data

Gene Location Family Relation with embryonic development PMID

BANF1 Cytoplasm Other BANF1 is required to maintain the
self-renewal of human embryonic stem cells

21 750 191

BCL10 Cytoplasm Regulatory Deficiency of BCL10 results in partial embryonic lethality caused by a
neural tube closure defect

11 163 238

CFDP1 Nucleus Other CFDP1 can control neural differentiation
by regulating the cell cycle

33 987 914

CHEK1 Cytoplasm Regulatory CHEK1 promotes DNA repair and is needed
for embryo development

34 349 269

CSNK2B Cytoplasm Enzyme Loss of CSNK2B compromises proliferation and differentiation of
embryonic neural progenitor cells

35 571 680

DGCR8 Nucleus Regulatory DGCR8 is essential for microRNA biogenesis and silencing of
embryonic stem cell self-renewal

17 259 983

NOTCH3 Cytoplasm Regulatory NOTCH3 is necessary for neuronal
differentiation and maturation in the adult spinal cord

25 164 209

SBDS Nucleus Other SBDS is an essential gene for early mammalian development and
plays a critical role in cell proliferation.

16 914 746

Table 3. The information of important ‘dark genes’ in ICM-to-VEC data

Gene Location Family Relation with embryonic development PMID

Banf1 Nucleus Other The knockdown of Banf1 promotes the differentiation of
mouse embryonic stem cells

21 750 191

Cdk7 Cytoplasm Enzyme Cdk7 plays an important role in embryonic
stem pluripotency

20 231 280

Chchd2 Nucleus Regulatory Chchd2 can regulate pluripotent stem
cell differentiation

27 810 911

Eif3h Cytoplasm Other Eif3h is required for normal embryonic
development in the mouse

23 173 090

Npm1 Nucleus Other Suppression of Npm1 expression in mouse embryonic
stem cells resulted in reduced cell proliferation

27 939 217

Rbx1 Cytoplasm Enzyme Physiological function of Rbx1 is to ensure cell
proliferation during the early embryonic development

19 325 126

Hmgn1 Nucleus Other Hmgn1 can affect the transcriptional profile of mouse
embryonic stem cells and neural progenitors

23 775 126

Sec61b Cytoplasm Transporter Sec61b is an essential factor for the embryonic
development

19 226 464

However, the SGAE method has certain limitations. For example,
the identified gene–gene associations do not necessarily imply
causal relationships between the two molecules, which will be a
potential focus of our future research topics.

Key Points

• In contrast to conventional differential-gene or static
approaches that emphasize the classification of cell
types, we presented a novel computational approach,
single-cell gene association entropy (SGAE), to reveal
critical states of cell transitions among cell populations,
which supports the monitoring of biological system
dynamics at the single-cell level.

• SGAE has a better performance in capturing critical
signals of cell transitions compared with other existing
critical transition detection methods.

• Temporal changes in cellular heterogeneity at the reso-
lution of single cells can be accurately distinguished by
the clustering analysis based on SGAE values, suggesting
SGAE has good performance in cell clustering.

• Our method can uncover SGAE-sensitive ‘dark genes’,
which are often neglected by traditional differential
expression analysis but are likely to be implicated in
essential biological processes of embryonic develop-
ment.
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