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Abstract. In this paper, we investigate the traveling wave solutions of K(m, n)

equation ut + a(um)x + (un)xxx = 0 by using the bifurcation method and
numerical simulation approach of dynamical systems. We obtain some new

results as follows: (i) For K(2, 2) equation, we extend the expressions of the

smooth periodic wave solutions and obtain a new solution, the periodic-cusp
wave solution. Further, we demonstrate that the periodic-cusp wave solution

may become the peakon wave solution. (ii) For K(3, 2) equation, we extend
the expression of the elliptic smooth periodic wave solution and obtain a new

solution, the elliptic periodic-blow-up solution. From the limit forms of the two

solutions, we get other three types of new solutions, the smooth solitary wave
solutions, the hyperbolic 1-blow-up solutions and the trigonometric periodic-

blow-up solutions. (iii) For K(4, 2) equation, we construct two new solutions,

the 1-blow-up and 2-blow-up solutions.

1. Introduction. The role of nonlinear dispersion in the formation of patterns in
liquid drops was studied by Rosenau and Hyman [1]. In [1]-[5] the studies were
carried out by introducing a family of nonlinear KdV type equations of the form

ut + a (um)x + (un)xxx = 0, (1)

which is called K(m,n) equation.
For (1), it was formally derived in [6]-[8] that the delicate interaction between

nonlinear convection and genuine nonlinear dispersion generates solitary waves with
compact support. Unlike soliton that narrows as the amplitude increases, the com-
pacton’s width is independent on the amplitude. Two important features of the
compacton structures were found:

(1) The compacton is a soliton characterized by the absence of exponential
wings.

(2) The width of the compactons is independent on the amplitude.
Three main methods, namely, the pseudo spectral method, the tri-Hamiltonian

operators, and Adomian decomposition method [9, 10], have been employed as
appropriate schemes to handle (1) analytically. Also, the bifurcation method [11]
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of dynamical systems was used to study the traveling wave solutions of (1). In [11]
Li and Liu obtained the following results:

(1) the explicit smooth periodic wave solutions of K(m, 2) (m = 2, 3, 4) equa-
tions,

(2) the explicit periodic-cusp wave solutions of K(m, 3) (m = 2, 3, 4, 5, 7) equa-
tions,

(3) the explicit peakon wave solutions of K(m, 2) (m = 2, 3, 4) equations.
Wazwaz [12, 13, 14] used the Adomian decomposition method and sine-cosine

method to study the traveling wave solutions for K(m, 1) and K(n, n) equations.
Many interesting results were obtained by Li and Wazwaz et al. Now we list some
previous results which will be compared with our work. In [11]-[14] letting ξ = x−c t,
the following conclusions were showed:

(1) K(2, 2) equation has the following explicit solutions:
(i) the smooth periodic wave solutions

u◦1(ξ) =
4 c

3 a
cos2

(√
a

4
ξ

)
, for a > 0, (2)

and

u◦2(ξ) =
4 c

3 a
sin2

(√
a

4
ξ

)
, for a > 0, (3)

(ii) the peakon wave solution

u◦3(ξ) =
2 c

3 a

(
1− exp

(√
−a

2
|ξ|
))

, for a < 0, (4)

(iii) the unbounded solutions

u◦4(ξ) = − 4 c

3 a
sinh2

(√
−a

4
ξ

)
, for a < 0, (5)

and

u◦5(ξ) =
4 c

3 a
cosh2

(√
−a

4
ξ

)
, for a < 0. (6)

(2) K(3, 2) equation has the following explicit solutions:
(i) the smooth periodic wave solution

u◦6(ξ) =

√
5 c

3 a
cn2

(
4

√
a c

60
ξ,

1√
2

)
, for a > 0, c > 0, (7)

(ii) the peakon wave solution

u◦7(ξ) =

√
5 c

9 a

[
3
(
1− (

√
3 +

√
2)2 exp (− 4

√
c

5 a |ξ| )
)2(

1 + (
√

3 +
√

2)2 exp (− 4
√

c
5 a |ξ| )

)2 − 2

]
, for ac > 0. (8)

(3) K(4, 2) equation has the following explicit solutions:
(i) the peakon wave solution

u◦8(ξ) = 3

√
c

2 a

[
(3
√

2 + 4)exp
(

6

√
|a| c2

4 |ξ|
)
− 4
]2
− 18[

(3
√

2 + 4)exp
(

6

√
|a| c2

4 |ξ|
)

+ 2
]2
− 6

, for a < 0, (9)



SOME NEW RESULTS ON EXPLICIT SOLUTIONS OF K(m, n) EQUATION 635

(ii) the smooth periodic wave solution

u◦9(ξ) = 3

√
c

2 a

1− cn (ω0ξ + η0, k0)
1 +

√
3− (1−

√
3) cn (ω0ξ + η0, k0)

, (10)

where a > 0, ω0 = 4

√
1
3

6

√
a c2

2 , η0 =
4√

3 π2 Γ( 1
6 )

3 Γ( 2
3 )

and k0 =
√

3−1
2
√

2
.

In this paper, we use the bifurcation method and numerical simulation approach
to study the traveling wave solutions of K(m, 2) (m = 2, 3, 4) equations. We obtain
some new results which are listed roughly as follows.

(1) For K(2, 2) equation, our results are as follows:
(i) We obtain the general expressions u1(ξ) and u2(ξ) (see (15), (16) ) of the

explicit smooth periodic wave solutions. The previous solutions u◦1(ξ) and u◦2(ξ)
become the special cases of u1(ξ) and u2(ξ) respectively.

(ii) We construct a new solution, the periodic-cusp wave solution u3(ξ) (see
(21)-(24) ). It is showed the previous solution u◦2(ξ) is a limit form of u3(ξ).

(2) For K(3, 2) equation, we complete the following works:
(i) We give the general expressions u4(ξ) and u10(ξ) (see (28) and (39) ) of

explicit smooth periodic wave solutions. The previous solution u◦6(ξ) becomes a
special case of u4(ξ).

(ii) We get two new solutions u5(ξ) and u11(ξ) (see (29) and (40) ) which are
called periodic-blow-up solutions.

(iii) From the limits of u4(ξ), u5(ξ), u10(ξ) and u11(ξ), we obtain six new solu-
tions u6(ξ), u7(ξ), u9(ξ), u12(ξ), u13(ξ) and u15(ξ) (see (36), (37), (38), (46), (47)
and (49) ).

(3) For K(4, 2) equation, we obtain two new solutions, the blow-up solutions
u16(ξ) and u17(ξ) (see (51) and (52) ).

(4) With the help of the software Mathematica, we verify the correctness of these
solutions by substituting their expressions into the equations K(m, 2) (m = 2, 3, 4)
respectively (see Remark 3).

We organize this paper as follows. In Section 2, we list our main results which
are included in three propositions. In Sections 3, 4, 5, we give the proofs of the
three propositions respectively. In Section 6, we give a short conclusion.

2. Main results and remarks. In this section we list our main results and give
some remarks. To state conveniently, for given constant wave speed c, let

ξ = x− c t. (11)

Via the following three propositions we state our main results.
Proposition 2.1. Consider K(2, 2) equation

ut + a(u2)x + (u2)xxx = 0, (12)

and its traveling wave equation

2ϕϕ′′(ξ) + 2(ϕ′(ξ))2 + aϕ2 − cϕ = g. (13)

For arbitrarily given parameter a and constants c, g, basing on two different
cases, we have the following results.

(1) If a, c and g satisfy that a > 0 and

g > −2c2

9a
, (14)
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then (12) has two trigonometric smooth periodic wave solutions

u1(ξ) =
1
3a

[
2 c±

√
18ag + 4 c2 cos

(√
a

2
ξ

)]
(15)

and

u2(ξ) =
1
3a

[
2 c±

√
18ag + 4 c2 sin

(√
a

2
ξ

)]
. (16)

(2) Assume a, c and g satisfy that a < 0 and

0 < g <
2c2

9|a|
. (17)

Denote

α =
4c2

9
+ 2ag, (18)

β =
2c

3
+
√

2|a|g, (19)

T =
2√
|a|

ln

∣∣∣∣∣3
√

2|a|g + 2c√
4c2 + 18ag

∣∣∣∣∣ , (20)

ϕ1(ξ) = − 1
2α β

[
β2exp

(
−
√
|a|
2

ξ

)
+ α exp

(√
|a|
2

ξ

)
− 4c β

3

]
for c > 0 and − T ≤ ξ ≤ T, (21)

and

ϕ2(ξ) = − 1
2α β

[
β2exp

(√
|a|
2

ξ

)
+ α exp

(
−
√
|a|
2

ξ

)
− 4c β

3

]
for c < 0 and − T ≤ ξ ≤ T. (22)

Then (12) has a periodic-cusp wave solution

u3(ξ) = ϕ1(ξ + 2nT ) for c > 0, n = 0, ±1, ±2, · · · , (23)

u3(ξ) = ϕ2(ξ + 2nT ) for c < 0, n = 0, ±1, ±2, · · · . (24)
For the figures of u3(ξ) and its numerical simulation with a = −2, c = 9 and

g = 1, see Fig.1(ai) and (bi) (i = 1, 2). When g tends to 2c2

9|a| , u3(ξ) tends to the
peakon wave solution u◦3(ξ). For the process of u3(ξ) changing to u◦3(ξ) with a = −2,
c = 9, g = 8.5, 8.99, 8.99999, 9, see Fig.2(a), (b), (c), (d).

Remark 1. When g = 0, u1(ξ) and u2(ξ) become u◦1(ξ) and u◦2(ξ) (see (2) and (3))
respectively. This implies that u◦1(ξ) and u◦2(ξ) are the special cases of u1(ξ) and
u2(ξ).

Proposition 2.2. Consider K(3, 2) equation

ut + a(u3)x + (u2)xxx = 0, (25)

and its traveling wave equation

2ϕϕ′′(ξ) + 2(ϕ′(ξ))2 + aϕ3 − cϕ = g. (26)

For arbitrarily given parameter a and constants c, g, basing on two different
cases, there are the following results.

(1◦) If a, c and g satisfy that a > 0, c > 0 and |g| < g1, where

g1 =

√
80 c3

729 a
, (27)



SOME NEW RESULTS ON EXPLICIT SOLUTIONS OF K(m, n) EQUATION 637

then (25) has an elliptic smooth periodic wave solution

u4(ξ) = a1 − (a1 − b1) sn2(η1ξ, k1), (28)

and an elliptic periodic-blow-up solution

u5(ξ) = a1 − (a1 − c1) sn−2(η1ξ, k1), (29)

(a1) graph of u3(ξ) for c = 9 (b1) simulation of u3(ξ) for c = 9

(a2) graph of u3(ξ) for c = −9 (b2) simulation of u3(ξ) for c = −9

Fig.1 The figures and the numerical simulation of u = u3(ξ) when a = −2, c = ±9

and g = 1. (It is displayed that the figure of u = u3(ξ) is identical with its numerical

simulation.)

(a) for g = 8.5 (b) for g = 8.99

(c) for g = 8.99999 (d) for g = 9

Fig.2 The changing process of u3(ξ) to u◦
3(ξ). (It is displayed that the periodic-cusp wave

becomes the peakon wave.)
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where

a1 =
2 3
√

100 ac + 3
√

10 3
√

(27a2g + ∆)
2

6a 3
√

27a2g + ∆
, (30)

b1 =
3
√

5
(
2 3
√

10 (−1 +
√

3 i) ac− (1 +
√

3 i) 3
√

(27a2g + ∆)
2
)

6 3
√

4 a 3
√

27a2g + ∆
, (31)

c1 =
3
√

5
(
−2 3
√

10 (1 +
√

3 i) ac + (−1 +
√

3 i) 3
√

(27a2g + ∆)
2
)

6 3
√

4 a 3
√

27a2g + ∆
, (32)

∆ =
√

a3 (−80 c3 + 729 ag2), (33)

k1 =
√

a1 − b1

a1 − c1
, (34)

and

η1 =

√
a(a1 − c1)

20
. (35)

These two solutions u4(ξ) and u5(ξ) possess the following limit properties:
(i) When g → g1, the elliptic smooth periodic wave solution u4(ξ) tends to a

hyperbolic smooth solitary wave solution

u6(ξ) =

√
5 c

9 a

(
−1 + 3 sech2

(
4

√
ac

80
ξ

))
, (36)

and the elliptic periodic-blow-up solution u5(ξ) tends to a hyperbolic blow-up solution

u7(ξ) = −
√

5 c

9 a

(
1 + 3 csch2

(
4

√
ac

80
ξ

))
. (37)

For the changing process of u4(ξ) to u5(ξ) with a = 2, c = 3 and g → g1 =
1.2171612389, see Fig.3, 4.

(ii) When g → −g1, the elliptic smooth periodic wave solution u4(ξ) tends to a

trivial solution u8(ξ) =
√

5 c
9 a , and the elliptic periodic-blow-up solution u5(ξ) tends

to a trigonometric periodic-blow-up solution

u9(ξ) =

√
5 c

9 a

(
1− 3 csc2

(
4

√
ac

80
ξ

))
. (38)

(2◦) If a, c and g satisfy that a < 0, c < 0 and |g| < g1, the (25) has an elliptic
smooth periodic wave solution

u10(ξ) = c2 + (b2 − c2) sn2(η2ξ, k2), (39)

and an elliptic periodic-blow-up solution

u11(ξ) = c2 + (a2 − c2) sn−2(η2ξ, k2), (40)

where

a2 =
3
√

5
(
−2 3
√

10 (1 +
√

3 i)ac + (−1 +
√

3 i) 3
√

(27a2g + ∆)
2
)

6 3
√

4 a 3
√

27a2g + ∆
, (41)

b2 =
3
√

5
(
2 3
√

10 (−1 +
√

3 i)ac− (1 +
√

3 i) 3
√

(27a2g + ∆)
2
)

6 3
√

4 a 3
√

27a2g + ∆
, (42)
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c2 =
2 3
√

100 ac + 3
√

10 3
√

(27a2g + ∆)
2

6 a 3
√

27a2g + ∆
, (43)

k2 =
√

b2 − c2

a2 − c2
, (44)

(a) (b)

(c) (d)

Fig.3 The changing process of u4(ξ) with a = 2, c = 3 and (a) g = 1.21, (b) g = 1.2171,

(c) g = 1.21716123, (d) g = 1.2171612389. (It is displayed that the smooth periodic wave

becomes the smooth solitary wave.)

(a) (b)

(c) (d)

Fig.4 The changing process of u5(ξ) with a = 2, c = 3 and (a) g = 1.21, (b) g = 1.2171,

(c) g = 1.21716123, (d) g = 1.2171612389. (It is displayed that the periodic-blow-up wave

becomes a blow-up wave.) and
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η2 =

√
|a| (a2 − c2)

20
. (45)

These two solutions u10(ξ) and u11(ξ) have the following limit properties:
(i) When g → g1, the elliptic smooth periodic wave solution u10(ξ) tends to a

hyperbolic smooth solitary wave solution

u12(ξ) =

√
5 c

9 a

(
1− 3 sech2

(
4

√
a c

80
ξ

))
, (46)

and the elliptic periodic-blow-up solution u11(ξ) tends to a hyperbolic blow-up solu-
tion

u13(ξ) =

√
5 c

9 a

(
1 + 3 csch2

(
4

√
a c

80
ξ

))
. (47)

(ii) When g → −g1, the elliptic smooth periodic wave solution u10(ξ) tends to a
trivial solution

u14(ξ) = −
√

5 c

9 a
, (48)

and the elliptic periodic-blow-up solution u11(ξ) tends to a trigonometric periodic-
blow-up solution

u15(ξ) =

√
5 c

9 a

(
−1 + 3 csc2

(
4

√
a c

80
ξ

))
. (49)

Remark 2. When a > 0, c > 0, g = 0, it follows that a1 =
√

5 c
3 a , b1 = 0,

c1 = −
√

5 c
3 a , k1 = 1√

2
, and η1 = 4

√
a c
60 . Thus u4(ξ) becomes u◦6(ξ). This implies

that u◦6(ξ) is a special case of u4(ξ).

Proposition 2.3. For arbitrarily given constants a < 0 and c 6= 0, K(4, 2)
equation

ut + a(u4)x + b(u2)xxx = 0, (50)

has a 1-blow-up solution

u16(ξ) = 3

√
c

2 |a|

(
4(
√

6− 2) + e−η3|ξ| + (2
√

6− 5) eη3|ξ|

2(
√

6− 2)− e−η3|ξ| − (2
√

6− 5) eη3|ξ|

)
, (51)

and a 2-blow-up solution

u17(ξ) = 3

√
c

2 |a|

(
−4(

√
6− 2) + e−η3|ξ| + (2

√
6− 5) eη3|ξ|

−2(
√

6− 2)− e−η3|ξ| − (2
√

6− 5) eη3|ξ|

)
, (52)

where

η3 = 6

√
|a| c2

4
. (53)

For the figures of u16(ξ) and u17(ξ) with a = −3, and c = 2, see Fig.5.

Remark 3. We have verified the correctness of these solutions by using the software
Mathematica. For example, when a = 1

3 , c = 3, g = −1, m = 2 and n = 2, the
commands for verifying u1(ξ) are as follows:

u = 6 +
√

30 Cos
[√

3
6 (x− c t)

]
Simplify[D[u, t]+a D[u2, x]+D[u2, {x, 3}]]
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(a) (b)

Fig.5 The figures of u16(ξ) and u17(ξ) with a = −3 and c = 2.

(a) The figure of u16(ξ). (b) The figure of u17(ξ).

3. The demonstrations on Proposition 2.1. In this section we derive the ex-
plicit expressions of the smooth periodic wave solutions and the periodic-cusp wave
solution for K(2, 2) equation. Substituting u = ϕ(ξ) with ξ = x − c t into (12), it
follows that

− c ϕ′ + 2aϕϕ′ + 6ϕ′ϕ′′ + 2ϕϕ′′′ = 0. (54)

Integrating (54) once, we have

2ϕϕ′′ + 2(ϕ′)2 + aϕ2 − c ϕ = g. (55)

Letting y = ϕ′, it yields the following planar system{
dϕ
dξ = y,
dy
dξ = 1

2ϕ (g + c ϕ− aϕ2 − 2y2),
(56)

which has the first integral

2y2ϕ2 = gϕ2 +
2 c

3
ϕ3 − a

2
ϕ4 + h. (57)

Solving equation g + c ϕ− aϕ2 = 0, we get two roots

ϕ∗± =
1

2 a

(
c±

√
c2 + 4a g

)
, where a > 0 and g > − c2

4a
. (58)

Similarly, solving equation g + 2 c
3 ϕ3 − a

2ϕ2 = 0, we obtain

ϕ◦± =
1

3 a

(
2 c±

√
4 c2 + 18a g

)
, where a > 0 and g > −2 c2

9
. (59)

When a > 0, according to the qualitative theory of differential equations, we
draw the special closed orbit Γ1 which passes (ϕ◦+, 0) and (ϕ◦−, 0) as Fig.6.

On ϕ-y plane the orbit Γ1 has expression

y = ±
√

a

2

√
g +

2 c

3
ϕ− ϕ2, where ϕ◦− ≤ ϕ ≤ ϕ◦+. (60)

Substituting (60) into the first equation of (56) and integrating it along the orbit
Γ1, we obtain the smooth periodic wave solutions u1(ξ) and u2(ξ) as (15) and (16).

When a < 0, similarly we get the boundaries (denoted as Γ2 and Γ3) of periodic
orbits (see Fig.7 (a), (b)).
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(a) for c < 0 and − 2 c2

9
< g < 0 (b) for c < 0 and g = 0 (c) for c 6= 0 and g > 0

(d) for c > 0 and g = 0 (e) for c > 0 and − 2 c2

9
< g < 0

Fig.6 The graph of the special closed orbit Γ1 when a > 0

(a) for c > 0 and 0 < g < 2 c2

9 |a| (b) for c < 0 and 0 < g < 2 c2

9 |a|

Fig.7 The graphs of the special closed orbits Γ2 and Γ3 when a < 0

Since Γ2 and Γ3 also have expression (60), substituting it into the first equation
of (56) and integrating, we obtain the periodic-cusp wave solution u3(ξ) as (23) and
(24).

Clearly, when g → 2 c2

9 |a| , it follows that α → 0, β → 4 c
3 and T → +∞. This

implies that the periodic-cusp wave solution u3(ξ) tends to the peakon wave solution
u◦3(ξ) when g → 2 c2

9 |a| . These complete the demonstrations on Proposition 2.1.

4. The demonstrations on Proposition 2.2. In this section, firstly we derive
the explicit expressions of the smooth periodic wave solutions and the periodic-
blow-up solutions for K(3, 2) equation. Secondly we show their limit forms. Similar
to the derivations in Sections 3, substituting u = ϕ(ξ) with ξ = x− c t into K(3, 2)
equation and integrating it, we have the following planar system{

dϕ
dξ = y,
dy
dξ = g+c ϕ−a ϕ3−2y2

2ϕ ,
(61)

which has the first integral

2ϕ2y2 = h + gϕ2 +
2 c

3
ϕ3 − 2a

5
ϕ5. (62)

When the integral constant h is zero, (62) becomes

2ϕ2y2 = ϕ2

(
g +

2 c

3
ϕ− 2a

5
ϕ3

)
. (63)

Solving equation g + 2 c
3 ϕ− 2a

5 ϕ3 = 0, we get three roots. When a > 0 and c > 0,
these three roots are written as a1, b1 and c1 in (30)-(32). When a < 0 and c < 0,
the three roots are written as a2, b2 and c2 in (41)-(43).
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On the other hand, solving equation{
y = 0,
g + c ϕ− aϕ3 − 2y2 = 0, (64)

we get three singular points (ϕi, 0) (i = 1, 2, 3) of system (61), where

Ω =
√

3a3(−4 c3 + 27ag2), (65)

ϕ1 =
2(3 i +

√
3)a c + 3

√
2 6
√

3 (1−
√

3 i) 3
√

(−9 a2g + Ω)2

2 3
√

4 6
√

35 a 3
√
−9 a2g + Ω

, (66)

ϕ2 =
2(−3 i +

√
3)a c + 3

√
2 6
√

3 (1 +
√

3 i) 3
√

(−9 a2g + Ω)2

2 3
√

4 6
√

35 a 3
√
−9 a2g + Ω

, (67)

and

ϕ3 =
2 3
√

3 a c + 3
√

2 3
√

(−9 a2g + Ω)2
3
√

36 a 3
√
−9 a2g + Ω

. (68)

According to the qualitative theory of differential equations, we draw the special
orbits Γi (i = 4, 5, 6, 7) as Fig.8, where Γ4 passes (a1, 0) and (b1, 0), Γ5 passes (c1, 0),
Γ6 passes (a2, 0), Γ7 passes (b2, 0) and (c2, 0).

(a) for a > 0, c > 0 and (b) for a > 0, c > 0 (c) for a > 0, c > 0 and

−g1 < g < 0 and g = 0 0 < g < g1

(d) for a < 0, c < 0 and (e) for a < 0, c < 0 (f) for a < 0, c < 0 and

−g1 < g < 0 and g = 0 0 < g < g1

Fig.8 The graphs of the special orbits Γi (i = 4, 5, 6, 7) when ac > 0

On ϕ-y plane, Γi (i = 4, 5, 6, 7) possess expressions as follows:

Γ4 : y = ±
√

a

5

√
(a1 − ϕ)(ϕ− b1)(ϕ− c1), where b1 ≤ ϕ ≤ a1, (69)

Γ5 : y = ±
√

a

5

√
(a1 − ϕ)(b1 − ϕ)(c1 − ϕ), where −∞ < ϕ ≤ c1, (70)

Γ6 : y = ±
√
|a|
5

√
(ϕ− a2)(ϕ− b2)(ϕ− c2), where a2 ≤ ϕ < ∞, (71)

and

Γ7 : y = ±
√
|a|
5

√
(a2 − ϕ)(b2 − ϕ)(ϕ− c2), where c2 ≤ ϕ ≤ b2. (72)
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Substituting the expressions of Γi (i = 4, 5, 6, 7) into the first equation and
integrating it along the orbits Γi (i = 4, 5, 6, 7), we have∫ ϕ

b1

ds√
(a1 − s)(s− b1)(s− c1)

=
√

a

5
|ξ|, c1 < b1 ≤ ϕ < a1 (along Γ4), (73)∫ ϕ

−∞

ds√
(a1 − s)(b1 − s)(c1 − s)

=
√

a

5
|ξ|, ϕ ≤ c1 < b1 < a1 (along Γ5), (74)∫ ∞

ϕ

ds√
(s− a2)(s− b2)(s− c2)

=

√
|a|
5
|ξ|, c2 < b2 < a2 ≤ ϕ (along Γ6), (75)

and∫ ϕ

c2

ds√
(a2 − s)(b2 − s)(s− c2)

=

√
|a|
5
|ξ|, c2 < ϕ ≤ b2 < a2 (along Γ7), (76)

Completing the four integrals above and noting that u = ϕ(ξ), we obtain u4(ξ),
u5(ξ), u10(ξ) and u11(ξ) as (28), (29), (39) and (40).

Now we show the limit forms of u4(ξ), u5(ξ), u10(ξ) and u11(ξ) when |g| → g1.
From (30)-(35) and (41)-(45), we see that when g → g1, it follows that

a1 → 2

√
5c

9a
, (77)

c1 → −
√

5c

9a
and b1 → −

√
5c

9a
, (78)

a2 →
√

5c

9a
and b2 →

√
5c

9a
, (79)

c2 → −2

√
5c

9a
, (80)

k2 → 1 and k1 → 1 (81)
and

η2 → 4

√
ac

80
and η1 → 4

√
ac

80
. (82)

Note that
sn (ξ, 1) = tanh ξ, (83)

sech2 ξ = 1− tanh2 ξ, (84)

coth ξ =
1

tanh ξ
, (85)

and
csch2 ξ = coth2 ξ − 1. (86)

Thus from (28), (29), (39), (40) and (77)-(86), we obtain the limit forms u6(ξ),
u7(ξ), u12(ξ) and u13(ξ) (see (36), (37), (46) and (47) ).

On the other hand, when g → −g1, it follows that

a1 →
√

5c

9a
and b1 →

√
5c

9a
, (87)

c1 → −2

√
5c

9a
, (88)

a2 → 2

√
5c

9a
, (89)
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c2 → −
√

5c

9a
and b2 → −

√
5c

9a
, (90)

k1 → 0 and k2 → 0 (91)
and

η1 → 4

√
ac

80
and η2 → 4

√
ac

80
. (92)

Note that
sn (ξ, 0) = sin ξ =

1
csc ξ

. (93)

From (28), (29), (39), (40) and (87)-(93), we obtain the limit forms u8(ξ), u9(ξ),
u14(ξ) and u15(ξ) (see (38), (48) and (49) ).

These complete the demonstration on Proposition 2.2.

5. The demonstrations on Proposition 2.3. In this section we derive the ex-
plicit expressions of the blow-up solutions for K(4, 2) equation. Similar to the
derivations in Sections 3, substituting u = ϕ(ξ) with ξ = x− c t into K(4, 2) equa-
tion and integrating it, we have the following planar system{

dϕ
dξ = y,
dy
dξ = g+c ϕ−a ϕ4−2y2

2ϕ ,
(94)

which has the first integral

2ϕ2y2 = h + gϕ2 +
2 c

3
ϕ3 − a

3
ϕ6, (95)

where h is the integral constant.
When a < 0, h = 0 and g =

3√
c4

3
√

16 |a|
, (95) becomes

y2 =

√
|a|
6

(ϕ + p)2(ϕ2 + gϕ + r), (96)

where

p = 3

√
c

2a
, (97)

q = − 3

√
4c

a
, (98)

and

r = 3 3

√( c

2a

)2

. (99)

Substituting (96) into the first equation of (94) and integrating it from −∞ to
ϕ, or ϕ to ∞, we have∫ ϕ

−∞

ds

(s + p)
√

s2 + qs + r
= −

√
|a|
6
|ξ| (100)

and ∫ ∞

ϕ

ds

(s + p)
√

s2 + qs + r
=

√
|a|
6
|ξ|. (101)

Completing the two integrals above and noting that u = ϕ(ξ), we obtain two
blow-up solutions u16(ξ) and u17(ξ) as (51)-(52). This completes the demonstration
on Proposition 2.3.
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6. Conclusion. In this paper we have studied K(m, 2) (m = 2, 3, 4) equations.
We have got some new results which were listed in Proposition 2.1, 2.2, 2.3. Not
only have some previous works become our special cases, but many new explicit
solutions have been obtained. So far, for the three equations above, we have the
following conclusions on the explicit traveling wave solutions:

(i) When a > 0, K(2, 2) equation has two types of explicit traveling wave solu-
tions, the smooth periodic wave solution and the periodic-cusp wave solution.

(ii) When a < 0, K(2, 2) equation has three types of explicit traveling wave
solutions, the periodic-cusp wave solution, the peakon wave solution and the blow-
up solution.

(iii) When a 6= 0, K(3, 2) equation has six types of explicit traveling wave so-
lutions, the smooth periodic wave solution, the periodic-cusp wave solution, the
periodic-blow-up solution, the 1-blow-up solution, the smooth solitary wave solu-
tion and the peakon wave solution.

(iv) When a > 0, K(4, 2) equation has one type of explicit traveling wave solution,
that is, the smooth periodic wave solution.

(v) When a < 0, K(4, 2) equation three types of explicit traveling wave solutions,
that is, the peakon wave solution, the 1-blow-up and 2-blow-up solutions.
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