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Abstract. In this paper, we study the nonlinear wave solutions of the gener-
alized Camassa-Holm-Degasperis-Procesi equation ut − uxxt + (1 + b)u2ux =
buxuxx + uuxxx. Through phase analysis, several new types of the explicit
nonlinear wave solutions are constructed. Our concrete results are: (i) For

given b > −1, if the wave speed equals 1
1+b

, then the explicit expressions of

the smooth solitary wave solution and the singular wave solution are given. (ii)
For given b > −1, if the wave speed equals 1 + b, then the explicit expressions
of the peakon wave solution and the singular wave solution are got. (iii) For

given b > −2 and b 6= −1, if the wave speed equals 2+b

2
, then the explicit

smooth solitary wave solution, the peakon wave solution and the singular wave
solution are obtained. We also verify the correctness of these solutions by using
the software Mathematica. Our work extends some previous results.

1. Introduction. Consider the following nonlinear equation

ut − uxxt + (1 + b)u2ux = buxuxx + uuxxx, (1)

which was proposed by Wazwaz [1], where b 6= −1. Eq.(1) is a generalized form of
the Camassa-Holm-Degasperis-Procesi equation [2]-[4]

ut − uxxt + (1 + b)uux = buxuxx + uuxxx. (2)

When b = 2, Eq.(2) becomes the CH equation

ut − uxxt + 3uux = 2uxuxx + uuxxx, (3)

and Eq.(1) becomes a generalized CH equation

ut − uxxt + 3u2ux = 2uxuxx + uuxxx. (4)

While b = 3, Eq.(2) becomes the DP equation

ut − uxxt + 4uux = 3uxuxx + uuxxx, (5)

and Eq.(1) becomes a generalized DP equation

ut − uxxt + 4u2ux = 3uxuxx + uuxxx. (6)
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Eq.(3) was derived by Camassa and Holm [5] in 1993. It was found that Eq.(3)
is of many rich structures and properties, for instance [6]-[17]. Eq.(5) was given by
Degasperis and Procesi [2] in 1999, and it was also investigated in many literatures,
for instance [18]-[21].

Recently, Eq.(4) and Eq.(6) have also been investigated by many authors. Liu
and Qian [22] studied the peakons and their bifurcation for Eq.(4). Tian and Song
[23] gave some physical explanations and obtained the peakons composed of the
hyperbolic function tanh z for Eq.(4). Shen and Xu [24] discussed the bifurcations
of the smooth and non-smooth traveling waves for Eq.(4). When the wave speed
equals 1, Khuri [25] obtained a singular wave solution composed of the trigonometric
functions for Eq.(4). When the wave speed equals 1 or 2, Wazwaz [26] obtained
eleven exact traveling wave solutions composed of the trigonometric functions or
the hyperbolic functions, and Liu et al [27] got a peakon solution composed of
the hyperbolic functions for Eq.(4). Liu and Guo [28] investigated the periodic
blow-up solutions and their limit forms for Eq.(4). When the wave speed equals
5/2, Wazwaz [26] obtained nine exact traveling wave solutions composed of the
hyperbolic functions, and Liu et al [27] got a peakon solution composed of the
hyperbolic functions for Eq.(6). In Ref.[29] Wang and Tang obtained four exact
solutions to Eq.(4) and Eq.(6) respectively. For wave speed 2+b

2 , Wazwaz [1] showed
that the bell-shaped solitary wave and singular wave coexist in Eq.(1) and gave their
expressions as

ũ1(x, t) = −3(2 + b)

2(1 + b)

[
1 − tanh2

(
1

2
x − 2 + b

4
t

)]
, (7)

and

ũ2(x, t) = −3(2 + b)

2(1 + b)

[
1 − coth2

(
1

2
x − 2 + b

4
t

)]
. (8)

In this paper, we investigate the explicit nonlinear wave solutions to Eq.(1). Some
previous results [1], [22], [26]-[29] are extended. Our main results and remarks are
arranged in Section 2. In Section 3 we give some preliminaries. The demonstrations
of the main results are given in Sections 4, 5, 6. A short conclusion is given in the
final section.

2. Main results and remarks. In this section we state our main results and give
some remarks. Our main results are listed in the following three propositions.

Proposition 1. When the parameter b > −1 and the wave speed equals 1
1+b , the

smooth solitary wave solution and the singular wave solution coexist in Eq.(1). Their
expressions are as follows:

(1) The smooth solitary wave solution is of expression

u1(x, t) =
1

(1 + b)2

[
1 + b − 3(2 + b) sech2 1√

2(1 + b)

(
x − t

1 + b

)]
. (9)

(2) The singular wave solution possesses expression

u2(x, t) =
1

(1 + b)2

[
1 + b + 3(2 + b) csch2 1√

2(1 + b)

(
x − t

1 + b

)]
. (10)

For the figures of u1(x, t) and u2(x, t) with b = 5, see Fig.1(a), (b).
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Proposition 2. When the parameter b > −1 and the wave speed equals 1 + b,
the peakon wave solution and the singular wave solution coexist in Eq.(1). Their
expressions are as follows:

(1◦) The peakon wave solution has expression

u◦
1(x, t) =

6(2 + b)
(√

6 +
√

1 + b |x − (1 + b)t |
)2 − 1. (11)

(2◦) The singular wave solution is of expression

u◦
2(x, t) =

6(2 + b)

(1 + b) [x − (1 + b)t]
2 − 1. (12)

For the figures of u◦
1(x, t) and u◦

2(x, t) with b = 5, see Fig.2(a), (b).

Proposition 3. When the parameter b > −2, b 6= −1 and the wave speed equals
2+b
2 , the smooth solitary wave solution, the peakon wave solution and the singular

wave solution coexist in Eq.(1). Their expressions are as follows:
(1∗) The smooth solitary wave solution has expression

u∗
1(x, t) = −3(2 + b)

2(1 + b)
sech2 1

2

(
x − 2 + b

2
t

)
. (13)

(2∗) The peakon wave solution is of expression

u∗
2(x, t) =

3(2 + b)(2 + 3b + b2)

2(1 + b)
[√

3(2 + b) cosh 1
2

(
x − 2+b

2 t
)

+
√

8 + 6b + b2 sinh 1
2

∣∣x − 2+b
2 t

∣∣
]2 .

(14)
(3∗) The singular wave solution possesses expression

u∗
3(x, t) =

3(2 + b)

2(1 + b)
csch2 1

2

(
x − 2 + b

2
t

)
. (15)

For the figures of u∗
i (x, t) (i = 1, 2, 3) with b = 5, see Fig.3(a), (b), (c).

(a) u = u1(x, t) (b) u = u2(x, t)

Fig.1 The figures of u = u1(x, t) and u = u2(x, t)
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(a) u = u◦

1(x, t) (b) u = u◦

2(x, t)

Fig.2 The figures of u = u◦

1(x, t) and u = u◦

2(x, t)

(a) u = u∗

1(x, t) (b) u = u∗

2(x, t) (c) u = u∗

3(x, t)

Fig.3 The figures of u = u∗

1(x, t), u = u∗

2(x, t), and u = u∗

3(x, t)

Remark 1. The expressions u∗
1(x, t) and u∗

3(x, t) are the same with Wazwaz’s
results ũ1(x, t) and ũ2(x, t) obtained by using tanh and sine-cosine method. Mean-
while, other five expressions, u1(x, t), u2(x, t), u◦

1(x, t), u◦
2(x, t) and u∗

2(x, t) are new
exact solutions of Eq.(1).

Remark 2. By using the software Mathematica, we have tested the correctness of
these solutions. The commands are as follows:

u1(x, t) = 1
(1+b)2

(
1 + b − 3 (2 + b) Sech

[√
1

2 (1+b)

(
x − t

1+b

)]2
)

u2(x, t) = 1
(1+b)2

(
1 + b + 3 (2 + b) Csch

[√
1

2 (1+b)

(
x − t

1+b

)]2
)

u3(x, t) = 6 (2+b)

(
√

6+
√

1+b (x−(1+b) t))
2 − 1

u4(x, t) = 6 (2+b)

(
√

6−
√

1+b (x−(1+b) t))
2 − 1

u5(x, t) = 6 (2+b)

(1+b) (x−(1+b) t)2
− 1

u6(x, t) = − 3 (2+b)
2 (1+b) Sech

[
x
2 − (2+b) t

4

]2

u7(x, t) = 3 (2+b) (2+3 b+b2)

2 (1+b)
(√

3 (2+b) Cosh [ x
2−

(2+b) t
4 ]+

√
8+6 b+b2 Sinh [ x

2−
(2+b) t

4 ]
)2

u8(x, t) = 3 (2+b) (2+3 b+b2)

2 (1+b)
(√

3 (2+b) Cosh [ x
2−

(2+b) t
4 ]−

√
8+6 b+b2 Sinh [ x

2−
(2+b) t

4 ]
)2
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u9(x, t) = 3 (2+b)
2 (1+b) Csch

[
x
2 − (2+b) t

4

]2

u=u1(x, t)
ut=D[u, t]
ux=D[u, x]
uxx=D[ux, x]
uxxt=D[uxx, t]
uxxx=D[uxx, x]
Simplify[ut−uxxt+(b+1) u2 ux−b ux uxx−u uxxx]

3. Preliminaries. In order to derive our main results, let

ξ = x − ct, (16)

and u = ϕ(ξ), where c is a constant and is called the wave speed. Thus Eq.(1)
becomes a third order ordinary differential equation

−c ϕ′ + c ϕ′′′ + (1 + b)ϕ2ϕ′ = bϕ′ϕ′′ + ϕϕ′′′. (17)

Integrating (17) once, it follows that

ϕ′′(ϕ − c) =
1 + b

3
ϕ3 − cϕ + g − b − 1

2
(ϕ′)2, (18)

where g is the constant of integration .
Letting y = ϕ′, it yields the following planar system





dϕ

dξ
= y,

(ϕ − c)
dy

dξ
=

1 + b

3
ϕ3 − c ϕ + g − b − 1

2
y2.

(19)

Multiplying (19) 1 by ϕ − c, we have




(ϕ − c)
dϕ

dξ
= (ϕ − c)y,

(ϕ − c)
dy

dξ
=

1 + b

3
ϕ3 − c ϕ + g − b − 1

2
y2.

(20)

By using the transformation dτ = dξ
ϕ−c , (20) can be rewritten as the Hamiltonian

system 



dϕ

dτ
= (ϕ − c)y,

dy

dτ
=

1 + b

3
ϕ3 − c ϕ + g − b − 1

2
y2.

(21)

Let

a0 =
6g − 6c2 + 2(1 + b)c3

3(b − 1)
, (22)

a1 =
2(1 + b)c2 − 2c

b
, (23)

a2 = 2c, (24)

a3 =
2(1 + b)

3(2 + b)
, (25)

and

H(ϕ, y) = (ϕ − c)b−1
[
a0 + a1(ϕ − c) + a2(ϕ − c)2 + a3(ϕ − c)3 − y2

]
. (26)
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It is easy to check that

H(ϕ, y) = h (27)

is the first integral for both systems (19) and (21). Therefore both systems (19) and
(21) have the same topological phase portraits except line ϕ = c. This implies that
one can understand the phase portraits of system (19) from that of system (21).

Now we begin to study some phase portraits of system (21). Let

z = f(ϕ), (28)

where

f(ϕ) =
1 + b

3
ϕ3 − cϕ + g. (29)

Thus we have

f ′(ϕ) = (1 + b)ϕ2 − c. (30)

Solving f ′(ϕ) = 0, it follows that

ϕ = ±
√

c

1 + b
.

When g = 0, we have

f

(
±

√
c

1 + b

)
= ∓2c

3

√
c

1 + b
. (31)

Let

ϕ∗ =

√
3c

1 + b
, (32)

ϕ0 =

√
c

1 + b
, (33)

and

g0 =
2|c|
3

√
c

1 + b
. (34)

Thus for given b > −1 and c > 0, we draw the graph of z = f(ϕ) as Fig.4. For
given b < −1 and c < 0, the graph is similar.

(a) g < −g0 (b) g = −g0 (c) −g0 < g < 0 (d) g = 0

(e) 0 < g < g0 (f) g = g0 (g) g > g0

Fig.4 The graph of z = f(ϕ) for given b > −1 and c > 0
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On the other hand, it is seen that (ϕ̃, 0) is a singular point of system (21) if and
only if f(ϕ̃) = 0. At the singular point (ϕ̃, 0), it is easy to see that the linearized
system of system (21) has the eigenvalues

λ±(ϕ̃, 0) = ±
√

(ϕ̃ − c)f ′(ϕ̃). (35)

From (27) and (35) we see that the singular point (ϕ̃, 0) is of the following
properties:

(i) If (ϕ̃ − c)f ′(ϕ̃) > 0, then (ϕ̃, 0) is a saddle point of system (21).
(ii) If (ϕ̃ − c)f ′(ϕ̃) = 0, then (ϕ̃, 0) is a degenerate saddle point of system (21).
(iii) If (ϕ̃ − c)f ′(ϕ̃) < 0, then (ϕ̃, 0) is a center point of system (21).
Let

y0 =
2(1 + b)c3 − 6c2 + 6g

3(b − 1)
. (36)

Similarly, if y0 > 0, then (c,−√
y0) and (c,

√
y0) are two saddle points of system

(21) and
H(c,±√

y0) = 0. (37)

Next we study the bifurcation phase portraits of system (21) by using these
information, and derive our results through some phase portraits.

4. The demonstrations on Proposition 1. In this section we suppose b > −1,
c > 0 and take g = g0. For other cases, the demonstrations are similar. From
Fig.4(f) we see that system (21) has two singular points (−2ϕ0, 0) and (ϕ0, 0) on
ϕ-axis. And f ′(ϕ) satisfies f ′(−2ϕ0) > 0, f ′(ϕ0) = 0. For c 6= 1

1+b , we have y0 > 0.

Therefore system (21) has two saddle points (c,±√
y0) on line ϕ = c. For given

b > −1 and different c, we have the following inequalities and properties:
(i) When c > 1

1+b , it follows that

−2ϕ0 < ϕ0 < c and y0 > 0, (38)

H(−2ϕ0, 0) < H(ϕ0, 0) < 0, for even number b, (39)

and
H(−2ϕ0, 0) > H(ϕ0, 0) > 0, for odd number b. (40)

Hence, (−2ϕ0, 0) is a center point and (ϕ0, 0) is a degenerate saddle point.
(ii) When c = 1

1+b , it follows that

−2ϕ0 < ϕ0 = c and y0 = 0, (41)

H(−2ϕ0, 0) < H(ϕ0, 0) = 0, for even number b, (42)

and
H(−2ϕ0, 0) > H(ϕ0, 0) = 0, for odd number b. (43)

Thus (−2ϕ0, 0) is a center point. (ϕ0, 0) is a multiple singular point, that is,
the degenerate saddle point. And the saddle points (c,

√
y0), (c,−√

y0) coincide
together.

(iii) When 0 < c < 1
1+b , it follows that

−2ϕ0 < c < ϕ0 and y0 > 0, (44)

H(−2ϕ0, 0) < 0 < H(ϕ0, 0), for even number b, (45)

and
H(−2ϕ0, 0) > H(ϕ0, 0) > 0, for odd number b. (46)

Therefore, (−2ϕ0, 0) is a center point and (ϕ0, 0) is a degenerate saddle point.
Thus we obtain the bifurcation phase portraits of system (21) as Fig.5.
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(a) c > 1/(1 + b) (b) c = 1/(1 + b) (c) 0 < c < 1/(1 + b)

Fig.5 The bifurcation phase portraits of system (21) when g = g0

From Fig.5(b) it is seen that when c = 1
1+b , there is a homoclinic orbit l1 connect-

ing with singular point
(

1
1+b , 0

)
and passing point

(
− 5+2b

(1+b)2 , 0
)
. The expression of

l1 is

y = ±
√

2(1 + b)

3(2 + b)

(
1

1 + b
− ϕ

) (
ϕ +

5 + 2b

(1 + b)2

)1/2

, where − 5 + 2b

(1 + b)2
≤ ϕ <

1

1 + b
.

(47)
It is easy to show that a homoclinic orbit of system (21) corresponds to a solitary

wave of Eq.(1). In order to obtain the solitary wave solution, we substitute (47)

into dϕ
y = dξ. This yields equation

±dϕ(
1

1+b − ϕ
) √

ϕ + 5+2b
(1+b)2

=

√
2(1 + b)

3(2 + b)
dξ. (48)

Integrating (48) along l1, it follows that

∫ ϕ

− 5+2b

(1+b)2

ds(
1

1+b − s
)√

s + 5+2b
(1+b)2

=

√
2(1 + b)

3(2 + b)
|ξ|. (49)

Solving Eq.(49) for ϕ, we have

ϕ = − 5 + 2b

(1 + b)2
+

3(2 + b)

(1 + b)2
tanh2 ξ√

2(1 + b)
. (50)

Noting that u = ϕ(ξ) and ξ = x− t
1+b , we get the smooth solitary wave solution

u1(x, t) as (9).
On the other hand, from Fig.5(b) it is also seen there are two heteroclinic orbits

l2 and l3 connecting with singular point
(

1
1+b , 0

)
. Their expressions are

y = ±
√

2(1 + b)

3(2 + b)

(
ϕ − 1

1 + b

) (
ϕ +

5 + 2b

(1 + b)2

)1/2

, where
1

1 + b
< ϕ < +∞. (51)

Substituting (51) into dϕ
y = dξ and integrating it along these two heteroclinic orbits,

it yields equation

∫ +∞

ϕ

ds(
s − 1

1+b

) √
s + 5+2b

(1+b)2

=

√
2(1 + b)

3(2 + b)
|ξ|. (52)
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Completing the integral and solving the equation for ϕ, it follows that

ϕ =
1

(1 + b)2

[
1 + b + 3(2 + b) csch2 ξ√

2(1 + b)

]
. (53)

Since u = ϕ(ξ) and ξ = x − t
1+b , we get the singular wave solution u2(x, t) as

(10). These complete the demonstrations on Proposition 1.

5. The demonstrations on Proposition 2. In this section we suppose b > 1,
c > 0 and take the integral constant g = −g0. For other cases, the demonstrations
are similar. From Fig.4(b) it is seen that system (21) has two singular points
(−ϕ0, 0) and (2ϕ0, 0) on ϕ-axis, and f ′(−ϕ0) = 0, f ′(2ϕ0) > 0. When y0 > 0,
system (21) has two saddle points (c,±√

y0) on line ϕ = c. Also we have the
following inequalities:

(i) When c > 1 + b, it follows that

−ϕ0 < 2ϕ0 < c and y0 > 0, (54)

H(2ϕ0, 0) < H(−ϕ0, 0) < 0 for even number b, (55)

and
H(2ϕ0, 0) > H(−ϕ0, 0) > 0 for odd number b. (56)

(ii) When c = 1 + b, it follows that

−ϕ0 < 2ϕ0 < c and y0 > 0, (57)

H(2ϕ0, 0) < H(−ϕ0, 0) = 0 for even number b, (58)

and
H(2ϕ0, 0) > H(−ϕ0, 0) = 0, for odd number b. (59)

(iii) When 4
1+b < c < 1 + b, it follows that

−ϕ0 < 2ϕ0 < 0 and y0 > 0, (60)

H(2ϕ0, 0) < 0 < H(−ϕ0, 0) for even number b, (61)

and
H(2ϕ0, 0) > 0 > H(−ϕ0, 0) for odd number b. (62)

(iv) When c = 4
1+b , it follows that

−ϕ0 < 2ϕ0 = c and y0 = 0. (63)

(v) When 0 < c < 4
1+b , it follows that

−ϕ0 < c < 2ϕ0 and y0 < 0. (64)

Similar to the analysis in Section 4, we got the bifurcation phase portraits of
system (21) as Fig.6.

From Fig.6(a) one sees that there is a homoclinic orbit L1 connecting with sin-
gular point (−ϕ0, 0), and there are two heteroclinic orbits L2, L3 which connect
with the singular points (c,

√
y0) and (c,−√

y0) respectively. When c tends to 1+ b,
the homoclinic orbit L1 becomes a novel homoclinic orbit composed of three curve
segments L+

1 , L−
1 and ϕ = 1+b (see Fig.6(b)), where L+

1 and L−
1 possess expressions

respectively

L+
1 : y =

√
2(1 + b)

3(2 + b)
(1 + ϕ)3/2 where − 1 < ϕ ≤ 1 + b, (65)
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(a) c > 1 + b (b) c = 1 + b (c) 4

1+b
< c < 1 + b

(d) c = 4

1+b
(e) 0 < c < 4

1+b

Fig.6 The bifurcation phase portraits of system (21) when g = −g0

and

L−
1 : y = −

√
2(1 + b)

3(2 + b)
(1 + ϕ)3/2 where − 1 < ϕ ≤ 1 + b. (66)

Meanwhile, the heteroclinic orbits L2 and L3 become L∗
2 and L∗

3.

Substituting (65) and (66) into the dϕ
y = dξ we have

dϕ

(1 + ϕ)3/2
=

√
2(1 + b)

3(2 + b)
dξ, (67)

and

− dϕ

(1 + ϕ)3/2
=

√
2(1 + b)

3(2 + b)
dξ. (68)

Integrating (67) and (68) along L+
1 and L−

1 respectively, it follows that

∫ 1+b

ϕ

ds

(1 + s)3/2
=

√
2(1 + b)

3(2 + b)
|ξ|. (69)

Solving Eq.(69) for ϕ, we get

ϕ =
6(2 + b)

(√
6 +

√
(1 + b)|ξ|

)2 − 1. (70)

Noting that u = ϕ(ξ) and ξ = x− (1+ b)t, we obtain the peakon solution u◦
1(x, t)

as (11).
On the other hand, from Fig.6(b) one also sees that the heteroclinic orbits L∗

2

and L∗
3 have the same expressions as L+

1 and L−
1 except the definition intervals.



SEVERAL NEW TYPES OF SOLITARY WAVE SOLUTIONS FOR G-C-H-D-P EQ. 87

Similarly, we have

∫ +∞

ϕ

ds

(1 + s)3/2
=

√
2(1 + b)

3(2 + b)
|ξ|. (71)

Solving Eq.(71) for ϕ, we get

ϕ =
6(2 + b)

(1 + b)ξ2
− 1. (72)

Noting that u = ϕ(ξ) and ξ = x − (b + 1)t, we obtain the singular wave solution
u◦

2(x, t) as (12). These complete the demonstrations on Proposition 2.

6. The demonstrations on Proposition 3. In this section we suppose b > −1,
c > 0 and take the integral constant g = 0. For other cases, the demonstrations
are similar. From Fig.4(d) it is seen that system (21) has three singular points
(−ϕ∗, 0), (0, 0) and (ϕ∗, 0) on ϕ-axis, and f ′(−ϕ∗) > 0, f ′(0) < 0, f ′(ϕ∗) > 0.
When y0 > 0, system (21) has two saddle points (c,±√

y0) on line ϕ = c. Also we
have the following inequalities:

(i) When c > 2+b
2 , it follows that

−ϕ∗ < 0 < ϕ∗ < c and y0 > 0, (73)

H(−ϕ∗, 0) ≤ H(ϕ∗, 0) < H(0, 0) < 0 for even number b, (74)

and

H(−ϕ∗, 0) ≥ H(ϕ∗, 0) > H(0, 0) > 0 for odd number b. (75)

(ii) When c = 2+b
2 , it follows that

−ϕ∗ < 0 < ϕ∗ < c and y0 > 0, (76)

H(−ϕ∗, 0) ≤ H(ϕ∗, 0) < H(0, 0) = 0 for even number b, (77)

and

H(−ϕ∗, 0) ≥ H(ϕ∗, 0) > H(0, 0) = 0 for odd number b. (78)

(iii) When 3
1+b < c < 2+b

2 , it follows that

−ϕ∗ < 0 < ϕ∗ < c and y0 > 0, (79)

H(−ϕ∗, 0) ≤ H(ϕ∗, 0) < 0 < H(0, 0) for even number b, (80)

and

H(−ϕ∗, 0) > H(ϕ∗, 0) > 0 > H(0, 0) for odd number b. (81)

(iv) When c = 3
1+b , it follows that

−ϕ∗ < 0 < ϕ∗ = c and y0 = 0. (82)

(v) When 0 < c < 3
1+b , it follows that

−ϕ∗ < 0 < c < ϕ∗ and y0 < 0. (83)

Similar to the analysis in Section 4, we obtain the bifurcation phase portraits of
system (21) as Fig.7.

From Fig.7(a) it is seen that when c > 2+b
2 , there are two homoclinic orbits Γ1 and

Γ2 connecting with the singular point (0, 0) and two heteroclinic orbits Γ3 and Γ4

which connect with the singular points (c,
√

y0) and (c,−√
y0) respectively. When

c tends to 2+b
2 , Γ1 becomes the homoclinic orbit Γ∗

1, Γ2 becomes a novel homoclinic

orbit composed of three curve segments Γ+
2 , Γ−

2 and ϕ = 2+b
2 . Meanwhile Γ3 and
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Γ4 become heteroclinic orbits Γ∗
3 and Γ∗

4 respectively. The homoclinic orbit Γ∗
1 is of

expression

y = ±
√

2(1 + b)

3(2 + b)

√

ϕ +
3(2 + b)

2(1 + b)
ϕ where − 3(2 + b)

2(1 + b)
≤ ϕ < 0. (84)

(a) c > 2+b

2
(b) c = 2+b

2
(c) 3

1+b
< c < 2+b

2

(d) c = 3

1+b
(e) 0 < c < 3

1+b

Fig.7 The bifurcation phase portraits of system (21) when g = 0

Substituting (84) into dϕ
y = dξ and integrating it along Γ∗

1, it follows that

∫ ϕ

− 3(2+b)
2(1+b)

ds

s
√

s + 3(2+b)
2(1+b)

= −
√

2(1 + b)

3(2 + b)
|ξ|. (85)

Solving Eq.(85) for ϕ, we have

ϕ = −3(2 + b)

2(1 + b)
sech2 1

2
ξ. (86)

Since ξ = x− 2+b
2 t and u = ϕ(ξ), we obtain the bell-shaped solitary wave solution

u∗
1(x, t) as (13).
Note that the novel homoclinic orbit also has expression (84), where 0 < ϕ ≤ 2+b

2 .
Similarly, we have

∫ c

ϕ

ds

s
√

s + 3(2+b)
2(1+b)

=

√
2(1 + b)

3(2 + b)
|ξ|. (87)

Solving Eq.(87) for ϕ and noting that u = ϕ(ξ) with ξ = x− 2+b
2 t, we obtain the

peakon solution u∗
2(x, t) as (14).

On the other hand, the heteroclinic orbits Γ∗
3 and Γ∗

4 also have expression (84),
where 0 < ϕ < +∞. Similarly, we have

∫ +∞

ϕ

ds

s
√

s + 3(2+b)
2(1+b)

=

√
2(1 + b)

3(2 + b)
|ξ|. (88)
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Solving Eq.(88) for ϕ and noting that ξ = x − 2+b
2 t and u = ϕ(ξ), we obtain

the singular wave solution u∗
3(x, t) as (15). These complete the demonstrations on

Proposition 3.

7. Conclusion. In this paper, through the phase analysis, not only has the coex-
istence of several types of nonlinear wave solutions been shown, but their explicit
expressions have been given to Eq.(1). The correctness of these solutions have been
tested by the software Mathematica. Among our results, the solutions u∗

1(x, t) and
u∗

3(x, t) had been obtained by Wazwaz [1] via other method, tanh and sine-cosine
method. Other five solutions u1(x, t), u2(x, t), u◦

1(x, t), u◦
2(x, t) and u∗

2(x, t) are new.
Some previous results become our special cases. For instance, when b = 2, 3, u∗

2(x, t)
becomes the peakon solution which had been obtained in [26], and u◦

1(x, t), u◦
2(x, t)

respectively become the peakon wave solution and the singular wave solution which
had been given in [27]. These imply that our work extends some previous results.
In Eq.(3) and Eq.(5), the stability of the peakons and the solitary waves had been
proved by Constantin et al [30], [31]. But the stability of the solutions given in this
paper waits for further study.
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