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In this paper, two methods are employed to study the nonlinear wave solutions for two

(3+1)-dimensional equations which can be reduced to the potential KdV equation.

Firstly, using the simplified Hirota’s method, we present generalized multiple soliton solutions

and generalized multiple singular soliton solutions in which some differentiable arbitrary

functions are involved. Secondly, by means of some special orbits of the traveling wave system

and integrating approach, we obtain some other nonlinear wave solutions which also include

differentiable arbitrary functions. Our work extends pioneer’s results.

© 2015 Published by Elsevier Inc.
1. Introduction

In the nonlinear research, some higher-dimensional equations have been investigated. For instance, Jimbo and Miwa [1]

introduced (3+1)-dimensional equation

uyt + uxxxy − 3uxxuy − 3uxuxy − uxz = 0, (1.1)

as the second equation in the so-called Kadomtsev–Petviashvili hierarchy of equations. However, Dorizzi et al. [2] showed that

Eq. (1.1) is not completely integrable in the usual sense.

Boiti et al. [3] developed an inverse scattering scheme to solve the Cauchy problem for (2+1)-dimensional equation

uyt + uxxxy − 3uxxuy − 3uxuxy = 0, (1.2)

which is reduced to the KdV equation for y = x.

Yajima et al. [4] presented (2+1)-dimensional equation

utt − uxx − uyy + uxuxt + uyuyt − uxxtt − uyytt = 0, (1.3)

as a model of ion-acoustic waves in plasmas. Kako and Yajima [5] studied soliton interactions for Eq. (1.3).

Bogoyavlenskii [6,7] discussed the inverse scattering method of solution for (2+1)-dimensional equation

uxt + uxxxy − 2uxxuy − 4uxuxy = 0, (1.4)

which, like (1.2), reduces to the KdV equation for y = x.
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Clarkson and Mansfield [8] pointed out that the Eqs. (1.1)–(1.3) can be reduced to the SWWI equation

uxxxt + β (uxuxt + utuxx)− (uxx + uxt) = 0, (1.5)

and Eq. (1.4) can be reduced to the SWWII equation

uxxxt + β
(
2uxuxt + utuxx

) − (uxx + uxt) = 0. (1.6)

For Eq. (1.5), Clorkson and Mansfield [9] gave an interesting solution

u(x, t) = 3

β
tanh

x + f (t)

2
+ 3

β
tanh

x − f (t)

2
+ t

β
, (1.7)

which contains a differentiable arbitrary functions f(t). For Eq. (1.6), it seems that there is not solution which is similar to (1.7).

Several other equations and their multiple soliton solutions were studied by Wazwaz [9,10], Wen and Xu [11], Zhen et al. [12]

and Zuo et al. [13]. In these references, none of the solutions contains arbitrary function.

Wazwaz [14] introduced two (3+1)-dimensional equations

uyzt + uxxxyz − 6uxuxyz − 6uxyuxz = 0, (1.8)

and

uxzt + uxxxyz − 2(uxxuyz + uyuxxz)− 4(uxuxyz + uxyuxz) = 0, (1.9)

as two higher-dimensional shallow water wave equations. It is easy to see that Eqs. (1.8) and (1.9) can be reduced to the potential

KdV equation for z = y = x.

In [14], Wazwaz investigated multiple soliton solutions and multiple singular soliton solutions of Eqs. (1.8) and (1.9) respec-

tively.

For Eq. (1.8), Wazwaz gave the solutions combined by ekix+riy+siz−k3
i

t (i = 1, 2, 3), where ki, ri, si are arbitrary constants. For

Eq. (1.9), Wazwaz presented the solutions combined by ekix+riy+siz−k2
i

rit (i = 1, 2, 3), where ki, ri, si are arbitrary constants.

In this paper, we study the nonlinear wave solutions for Eqs. (1.8) and (1.9) respectively. Firstly, using Hirota’s bilinear

method [15,16], we obtain generalized soliton solutions and generalized singular soliton solutions. For Eq. (1.8), these solutions

are combined by ϕi(y, z)ekix−k3
i

t
, where ϕi(y, z) (i = 1, 2, 3) are arbitrary differentiable functions and ki (i = 1, 2, 3) are arbitrary

constants. For Eq. (1.9), these solutions are combined by ϕi(z)e
kix+riy−rik

2
i

t
, where ϕi(z) (i = 1, 2, 3) are arbitrary differentiable

functions and ki, ri (i = 1, 2, 3) are arbitrary constants. These imply that our work extends Wazwaz’s results. Secondly, by means

of some special orbits of the traveling wave system and integrating technology [17–22], we get some other nonlinear wave

solutions which also include differentiable arbitrary functions.

This paper is organized as follows. In Section 2, our main results are presented through four propositions. In Section 3, we

prove our propositions. A short conclusion is given in Section 4.

2. The new nonlinear wave solutions

In this section, we state the main results for Eqs. (1.8) and (1.9). Firstly, we state the main results for Eq. (1.8) by the following

two propositions.

Proposition 2.1. For arbitrarily given constants ki and arbitrarily given differentiable functions g(t, y), h(t, z), e(y, z), p(y, z), ϕi =
ϕi(y, z) (i = 1, 2, 3), if let

γ (t, y, z) = g(t, y)+ h(t, z)+ e(y, z), (2.1)

θi = kix − k3
i t (i = 1, 2, 3), (2.2)

a0 = (k1 − k2)2

(k1 + k2)2[p(y, z)]
, (2.3)

aij =
(

ki − kj

ki + kj

)2

(1 ≤ i < j ≤ 3), (2.4)

a123 = a12a13a23, (2.5)

f = 1 + ϕ1eθ1 + ϕ2eθ2 + ϕ3eθ3 + a12ϕ1ϕ2eθ1+θ2 + a13ϕ1ϕ3eθ1+θ3 + a23ϕ2ϕ3eθ2+θ3 + a123ϕ1ϕ2ϕ3eθ1+θ2+θ3 , (2.6)

and

g = 1 − ϕ1eθ1 − ϕ2eθ2 − ϕ3eθ3 + a12ϕ1ϕ2eθ1+θ2 + a13ϕ1ϕ3eθ1+θ3 + a23ϕ2ϕ3eθ2+θ3 − a123ϕ1ϕ2ϕ3eθ1+θ2+θ3 , (2.7)

then Eq. (1.8) has the following generalized soliton solutions and generalized singular soliton solutions:
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(1°) the generalized 1-soliton solution

u = −2k1ϕ1eθ1

p(y, z)+ ϕ1eθ1
+ γ (t, y, z); (2.8)

(2°) the generalized 2-soliton solution

u = −2(k1ϕ1eθ1 + k2ϕ2eθ2 + a0(k1 + k2)ϕ1ϕ2eθ1+θ2)

p(y, z)+ ϕ1eθ1 + ϕ2eθ2 + a0ϕ1ϕ2eθ1+θ2
+ γ (t, y, z); (2.9)

(3°) the generalized 3-soliton solution

u = −2
∂ f

∂x

/
f + γ (t, y, z); (2.10)

(4°) the generalized singular 1-soliton solution

u = 2k1ϕ1eθ1

p(y, z)− ϕ1eθ1
+ γ (t, y, z); (2.11)

(5°) the generalized singular 2-soliton solution

u = 2(k1ϕ1eθ1 + k2ϕ2eθ2 − a0(k1 + k2)ϕ1ϕ2eθ1+θ2)

p(y, z)− ϕ1eθ1 − ϕ2eθ2 + a0ϕ1ϕ2eθ1+θ2
+ γ (t, y, z); (2.12)

(6°) the generalized singular 3-soliton solution

u = −2
∂g

∂x
/g + γ (t, y, z). (2.13)

Proposition 2.2. For arbitrarily given constants c, k and arbitrarily given differentiable functions ψ(y, z), p(t, y), q(t, z), r(y, z), if let

λ(t, y, z) = p(t, y)+ q(t, z)+ r(y, z), (2.14)

α =
√∣∣∣ c

k

∣∣∣, (2.15)

and

β = 1

2

√∣∣∣ c

k3

∣∣∣, (2.16)

then Eq. (1.8) has the following nonlinear wave solutions:

(1°) the generalized fractional function solutions

u = − c (k x + ψ(y, z)− c t)

6 k2
− 2 k

k x + ψ(y, z)− c t
+ λ(t, y, z); (2.17)

and

u = c (k x + ψ(y, z)+ c t)

6 k2
− 2 k

k x + ψ(y, z)+ c t
+ λ(t, y, z); (2.18)

(2°) the generalized hyperbolic tanh function solutions

(i) if k > 0 and c > 0, then

u = −α tanh β [k x + ψ(y, z)− c t] + λ(t, y, z); (2.19)

(ii) if k < 0 and c < 0, then

u = α tanh β [k x + ψ(y, z)− c t] + λ(t, y, z); (2.20)

(iii) if k > 0 and c < 0, then

u = −α tanh β [k x + ψ(y, z)+ c t] + λ(t, y, z); (2.21)

(iv) if k < 0 and c > 0, then

u = α tanh β [k x + ψ(y, z)+ c t] + λ(t, y, z); (2.22)

(3°) the generalized hyperbolic coth function solutions

(i) if k > 0 and c > 0, then

u = −α coth β [k x + ψ(y, z)− c t] + λ(t, y, z); (2.23)
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(ii) if k < 0 and c < 0, then

u = α coth β [k x + ψ(y, z)− c t] + λ(t, y, z); (2.24)

(iii) if k > 0 and c < 0, then

u = −α coth β [k x + ψ(y, z)+ c t] + λ(t, y, z); (2.25)

(iv) if k < 0 and c > 0, then

u = α coth β [k x + ψ(y, z)+ c t] + λ(t, y, z); (2.26)

(4°) the generalized tangent function solutions

(i) if k > 0 and c > 0, then

u = α tan β [k x + ψ(y, z)+ c t] + λ(t, y, z); (2.27)

(ii) if k < 0 and c < 0, then

u = −α tan β [k x + ψ(y, z)+ c t] + λ(t, y, z); (2.28)

(iii) if k > 0 and c < 0, then

u = α tan β [k x + ψ(y, z)− c t] + λ(t, y, z); (2.29)

(iv) if k < 0 and c > 0, then

u = −α tan β [k x + ψ(y, z)− c t] + λ(t, y, z); (2.30)

(5°) the generalized cotangent function solutions

(i) if k > 0 and c > 0, then

u = −α cot β [k x + ψ(y, z)+ c t] + λ(t, y, z); (2.31)

(ii) if k < 0 and c < 0, then

u = α cot β [k x + ψ(y, z)+ c t] + λ(t, y, z); (2.32)

(iii) if k > 0 and c < 0, then

u = −α cot β [k x + ψ(y, z)− c t] + λ(t, y, z); (2.33)

(iv) if k < 0 and c > 0, then

u = α cot β [k x + ψ(y, z)− c t] + λ(t, y, z). (2.34)

Secondly, we state the main results for Eq. (1.9) by the following two propositions.

Proposition 2.3. For arbitrarily given constants ki, ri and arbitrarily given differentiable functions γ (z, t), p(z), ϕi = ϕi(z) (i = 1, 2, 3),

if let

ωi = kix + riy − k2
i rit (i = 1, 2, 3), (2.35)

b0 = (k1 − k2)2

(k1 + k2)2 [p(z)]
, (2.36)

bij =
(

ki − kj

ki + kj

)2

(1 ≤ i < j ≤ 3), (2.37)

b123 = b12b13b23, (2.38)

f = 1 + ϕ1eω1 + ϕ2eω2 + ϕ3eω3 + b12ϕ1ϕ2eω1+ω2 + b13ϕ1ϕ3eω1+ω3 + b23ϕ2ϕ3eω2+ω3 + b123ϕ1ϕ2ϕ3eω1+ω2+ω3 , (2.39)

and

g = 1 − ϕ1eω1 − ϕ2eω2 − ϕ3eω3 + b12ϕ1ϕ2eω1+ω2 + b13ϕ1ϕ3eω1+ω3 + b23ϕ2ϕ3eω2+ω3 − b123ϕ1ϕ2ϕ3eω1+ω2+ω3 , (2.40)

then Eq. (1.9) has the following generalized soliton solutions and generalized singular soliton solutions:

(1°) the generalized 1-soliton solution

u = −2k1ϕ1eω1

p(z)+ ϕ1eω1
+ γ (z, t); (2.41)
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(2°) the generalized 2-soliton solution

u = −2(k1ϕ1eω1 + k2ϕ2eω2 + b0(k1 + k2)ϕ1ϕ2eω1+ω2)

p(z)+ ϕ1eω1 + ϕ2eω2 + b0ϕ1ϕ2eω1+ω2
+ γ (z, t); (2.42)

(3°) the generalized 3-soliton solution

u = −2
∂ f

∂x

/
f + γ (z, t); (2.43)

(4°) the generalized singular 1-soliton solution

u = 2k1ϕ1eω1

p(z)− ϕ1eω1
+ γ (z, t); (2.44)

(5°) the generalized singular 2-soliton solution

u = 2(k1ϕ1eω1 + k2ϕ2eω2 − b0(k1 + k2)ϕ1ϕ2eω1+ω2)

p(z)− ϕ1eω1 − ϕ2eω2 + b0ϕ1ϕ2eω1+ω2
+ γ (z, t); (2.45)

(6°) the generalized singular 3-soliton solution

u = −2
∂g

∂x
/g + γ (z, t). (2.46)

Proposition 2.4. For arbitrarily given constants c, k, r and arbitrarily given differentiable functions ψ(z), λ(z, t), if let

α =
√∣∣∣ c

r

∣∣∣ , (2.47)

and

β = 1

2

√∣∣∣ c

k2r

∣∣∣ , (2.48)

then Eq. (1.9) has the following nonlinear wave solutions:

(1°) the generalized fractional function solutions

u = − c (k x + r y + ψ(z)− c t)

6 k r
− 2 k

k x + r y + ψ(z)− c t
+ λ(z, t); (2.49)

and

u = c (k x + r y + ψ(z)+ c t)

6 k r
− 2 k

k x + r y + ψ(z)+ c t
+ λ(z, t); (2.50)

(2°) the generalized hyperbolic tanh function solutions

(i) if r c > 0 and k > 0, then

u = −α tanh β [k x + r y + ψ(z)− c t] + λ(z, t); (2.51)

(ii) if r c > 0 and k < 0, then

u = α tanh β [k x + r y + ψ(z)− c t] + λ(z, t); (2.52)

(iii) if r c < 0 and k > 0, then

u = −α tanh β [k x + r y + ψ(z)+ c t] + λ(z, t); (2.53)

(iv) if r c < 0 and k < 0, then

u = α tanh β [k x + r y + ψ(z)+ c t] + λ(z, t); (2.54)

(3°) the generalized hyperbolic coth function solutions

(i) if r c > 0 and k > 0, then

u = −α coth β [k x + r y + ψ(z)− c t] + λ(z, t); (2.55)

(ii) if r c > 0 and k < 0, then

u = α coth β [k x + r y + ψ(z)− c t] + λ(z, t); (2.56)

(iii) if r c < 0 and k > 0, then

u = −α coth β [k x + r y + ψ(z)+ c t] + λ(z, t); (2.57)



402 Y. Chen, R. Liu / Applied Mathematics and Computation 260 (2015) 397–411
(iv) if r c < 0 and k < 0, then

u = α coth β [k x + r y + ψ(z)+ c t] + λ(z, t); (2.58)

(4°) the generalized tangent function solutions

(i) if r c > 0 and k > 0, then

u = α tan β [k x + r y + ψ(z)+ c t] + λ(z, t); (2.59)

(ii) if r c > 0 and k < 0, then

u = −α tan β [k x + r y + ψ(z)+ c t] + λ(z, t); (2.60)

(iii) if r c < 0 and k > 0, then

u = α tan β [k x + r y + ψ(z)− c t] + λ(z, t); (2.61)

(iv) if r c < 0 and k < 0, then

u = −α tan β [k x + r y + ψ(z)− c t] + λ(z, t); (2.62)

(5°) the generalized cotangent function solutions

(i) if r c > 0 and k > 0, then

u = −α cot β [k x + r y + ψ(z)+ c t] + λ(z, t); (2.63)

(ii) if r c > 0 and k < 0, then

u = α cot β [k x + r y + ψ(z)+ c t] + λ(z, t); (2.64)

(iii) if r c < 0 and k > 0, then

u = −α cot β [k x + r y + ψ(z)− c t] + λ(z, t); (2.65)

(iv) if r c < 0 and k < 0, then

u = α cot β [k x + r y + ψ(z)− c t] + λ(z, t). (2.66)

Remark 2.1. Since these solutions contain arbitrary functions, we add the word “generalized” to each type of solutions.

3. The derivations of our main results

Firstly, employing the simplified Hirota’s method, we derive the results of Proposition 2.1. For arbitrarily given constants ki

(i = 1, 2, 3) and arbitrarily given differentiable functions p(y, z), ϕi = ϕi(y, z) (i = 1, 2, 3) and γ (t, y, z) mentioned in Proposition

2.1, the derivations of Proposition 2.1 are composed of seven steps as follows:

Step 1. Determining the solutions of the linear equation

Consider the linear equation

uyzt + uxxxyz = 0, (3.1)

which is constructed by the linear part of Eq. (1.8). Assume that Eq. (3.1) has solution of form

u = ϕi ekix−cit (i = 1, 2, 3), (3.2)

where ci are to be determined.

Substituting (3.2) into Eq. (3.1), we get

ci = k3
i (i = 1, 2, 3). (3.3)

This implies that

u = ϕi ekix−k3
i
t (i = 1, 2, 3), (3.4)

are the solutions of Eq. (3.1).

Step 2. Constructing generalized 1-soliton solution

Let

θ1 = k1x − k3
1t, (3.5)

F1 = p(y, z)+ ϕ1 eθ1 , (3.6)
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and suppose Eq. (1.8) has solution of form

u = R
∂F1

∂x

/
F1 + γ (t, y, z), (3.7)

where R is to be determined. Substituting (3.7) into Eq. (1.8), we obtain R = −2. This means that the function in (2.8) is a solution

of Eq. (1.8).

Step 3. Constructing generalized 2-soliton solution

Let

θ2 = k2x − k3
2t, (3.8)

F2 = F1 + ϕ2 eθ2 + d12ϕ1ϕ2 eθ1+θ2 , (3.9)

and assume that Eq. (1.8) has solution of form

u = −2
∂F2

∂x

/
F2 + γ (t, y, z), (3.10)

where d12 is to be determined. Substituting (3.10) into Eq. (1.8), it follows that

d12 = (k1 − k2)2

(k1 + k2)2[p(y, z)]
. (3.11)

This shows that the function in (2.9) is a solution of Eq. (1.8).

Step 4. Constructing generalized 3-soliton solution

Let

θ3 = k3x − k3
3t, (3.12)

aij =
(

ki − kj

ki + kj

)2

(1 ≤ i < j ≤ 3), (3.13)

F3 = 1 + ϕ1 eθ1 + ϕ2 eθ2 + ϕ3 eθ3 + a12ϕ1ϕ2 eθ1+θ2 + a13ϕ1ϕ3 eθ1+θ3 + a23ϕ2ϕ3 eθ2+θ3 + d123ϕ1ϕ2ϕ3 eθ1+θ2+θ3 , (3.14)

and suppose Eq. (1.8) has solution of form

u = −2
∂F3

∂x

/
F3 + γ (t, y, z), (3.15)

where d123 is to be determined. Substituting (3.15) into Eq. (1.8), we have

d123 = a12a13a23. (3.16)

This implies that the function in (2.10) is a solution of Eq. (1.8).

Step 5. Constructing generalized singular 1-soliton solution

Let

G1 = p(y, z)− ϕ1 eθ1 , (3.17)

and suppose Eq. (1.8) has solution of form

u = N
∂G1

∂x

/
G1 + γ (t, y, z), (3.18)

where N is to be determined. Substituting (3.18) into Eq. (1.8), we get N = −2. This shows that the function in (2.11) is a solution

of Eq. (1.8).

Step 6. Constructing generalized singular 2-soliton solution

Let

G2 = p(y, z)− ϕ1 eθ1 − ϕ2 eθ2 + ρ12ϕ1ϕ2 eθ1+θ2 , (3.19)

and suppose Eq. (1.8) has solution of form

u = −2
∂G2

∂x

/
G2 + γ (t, y, z), (3.20)

where ρ12 is to be determined. Substituting (3.20) into Eq. (1.8), we obtain ρ12 = a0. This means that the function in (2.12) is a

solution of Eq. (1.8).
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Step 7. Constructing generalized singular 3-soliton solution

Let

G3 = 1 − ϕ1 eθ1 − ϕ2 eθ2 − ϕ3 eθ3 + a12ϕ1ϕ2 eθ1+θ2 + a13ϕ1ϕ3 eθ1+θ3 + a23ϕ2ϕ3 eθ2+θ3 + ρ123ϕ1ϕ2ϕ3 eθ1+θ2+θ3 , (3.21)

and assume that Eq. (1.8) has solution of form

u = −2
∂G3

∂x

/
G3 + γ (t, y, z), (3.22)

where ρ123 is to be determined. Substituting (3.15) into Eq. (1.8), we get ρ123 = −a123. This implies that the function in (2.13) is

a solution of Eq. (1.8).

Hereto, we complete the derivation of Proposition 2.1.

Remark 3.1. The 1- and 2-soliton solutions contain arbitrary differentiable function p(y, z) and this phenomenon has not been

found in previous works. But we have not found this phenomenon in 3-soliton solution.

Secondly, by using the method of dynamical systems, we derive the results of Proposition 2.2. For arbitrarily given constants

c, k and arbitrarily given differentiable functions ψ(y, z) and λ(t, y, z) mentioned in Proposition 2.2, let

δ =
√∣∣∣∣2

k

∣∣∣∣, (3.23)

α =
√∣∣∣ c

k

∣∣∣, (3.24)

β = 1

2

√∣∣∣ c

k3

∣∣∣, (3.25)

v0 = c

6 k2
, (3.26)

v1 = c

2 k2
, (3.27)

ξ = k x + ψ(y, z)− c t, (3.28)

and

η = k x + ψ(y, z)+ c t. (3.29)

Based on ξ and η, our derivations contain the following two parts.

Part 1. The derivations based on ξ
Substituting

u = f (ξ)+ λ(t, y, z), (3.30)

into Eq. (1.8), it follows that

[−6k2f ′′(ξ)f ′′(ξ)− 6k2f ′(ξ)f ′′′(ξ)− cf ′′′(ξ)+ k3f (5)(ξ)]ψyψz + [−cf ′′(ξ)− 6k2f ′(ξ)f ′′(ξ)+ k3f (4)(ξ)]ψyz = 0. (3.31)

Since ψ(y, z) is arbitrary, Eq. (3.31) holds if and only if

−6k2(f ′′)2(ξ)− 6k2f ′(ξ)f ′′′(ξ)− cf ′′′(ξ)+ k3f (5)(ξ) = 0, (3.32)

and

−cf ′′(ξ)− 6k2f ′(ξ)f ′′(ξ)+ k3f (4)(ξ) = 0. (3.33)

Note that Eq. (3.32) comes from taking the derivative on both sides of Eq. (3.33). Therefore we only consider Eq. (3.33). Integrating

Eq. (3.33) once, it follows that

f ′′′(ξ) = h0 + cf ′(ξ)

k3
+ 3

k
f ′(ξ)2, (3.34)

where h0 is an integral constant. If let

v = f ′(ξ), (3.35)

then Eq. (3.34) becomes

v′′(ξ) = h0 + c

k3
v(ξ)+ 3

k
v(ξ)2. (3.36)
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(a) k > )b(0 k < 0

Fig. 1. The graphs of (3.38) when h0 = c2

12 k5 and h1 = c3

216 k7 .
Putting w = v′(ξ ), we get a planar system⎧⎪⎪⎨
⎪⎪⎩

dv

dξ
= w,

dw

dξ
= h0 + c

k3
v + 3

k
v2,

(3.37)

with the first integral

w2 = 2

(
h1 + h0 v + c

2 k3
v2 + 1

k
v3

)
, (3.38)

where h1 is another integral constant. The subsequent derivations are processed by the following three steps.

Step 1. Constructing generalized fractional function solution with ξ

Taking h0 = c2

12k5 and h1 = c3

216 k7 , then (3.38) possesses graphs as Fig. 1.

In Fig. 1, the curves possess expressions as follows:

l±1 : w = ±δ(v + v0)
3
2 , −v0 < v < +∞; (3.39)

and

l±2 : w = ±δ(−v − v0)
3
2 , −∞ < v < −v0. (3.40)

Substituting (3.39) and (3.40) into the first equation of (3.37) respectively, and integrating them along the corresponding curves,

we have∫ +∞

v

ds

(s + v0)
3
2

= δ |ξ | (
along l±1

)
, (3.41)

and ∫ v

−∞

ds

(−v0 − s)
3
2

= δ |ξ | (
along l±2

)
. (3.42)

Completing the integrals and solving the equations for v, we get

v = −v0 + 2 k

ξ 2
. (3.43)

Via (3.35) and (3.43), it follows that

f ′(ξ) = −v0 + 2 k

ξ 2
. (3.44)

Integrating Eq. (3.44) and taking the integral constant as zero, we obtain

f (ξ) = −v0ξ − 2 k

ξ
. (3.45)
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(a) k > 0 and c > 0 (b) k < 0 and c < 0

Fig. 2. The graphs of (3.38) when h0 = h1 = 0 and k c > 0.
These imply that

u = −v0 ξ − 2 k

ξ
+ λ(t, y, z) (3.46)

is a solution of Eq. (1.8), that is, the function in (2.17) is a solution of Eq. (1.8).

Step 2. Constructing generalized hyperbolic tanh and coth function solutions with ξ
Taking h0 = h1 = 0 and k~c > 0, then the graphs of (3.38) are as Fig. 2.

In Fig. 2, the curves possess the following expressions:

l±3 : w = ∓δ v (v + v1)
1
2 , −v1 ≤ v < 0; (3.47)

l±4 : w = ±δ v (−v − v1)
1
2 , 0 < v ≤ −v1; (3.48)

l±5 : w = ±δ v (v + v1)
1
2 , 0 < v < +∞; (3.49)

and

l±6 : w = ∓δ v (−v − v1)
1
2 , −∞ < v < 0. (3.50)

Substituting (3.47) into dv
w = dξ and integrating it along l±3 , we have

−
∫ v

−v1

ds

s (s + v1)
1
2

= δ |ξ |. (3.51)

Completing the integral, it follows that

arctanh

(√
c + 2 k2 v√

c

)
= −β |ξ |. (3.52)

From (3.52), we get

v = − c

2 k2
sech

2βξ, (3.53)

that is,

f ′(ξ) = − c

2 k2
sech

2βξ . (3.54)

Further we obtain

f (ξ) = −α tanh βξ . (3.55)

This implies that the function in (2.19) is a solution of Eq. (1.8).

Substituting (3.48)–(3.50) into dv
w = dξ respectively, and integrating them along the corresponding curves, we have∫ −v1

v

ds

s (−s − v )
1
2

= δ |ξ | (
along l±4

)
, (3.56)
1



Y. Chen, R. Liu / Applied Mathematics and Computation 260 (2015) 397–411 407

(a) k > 0 and c < 0 (b) k < 0 and c > 0

Fig. 3. The graphs of (3.38) when h0 = h1 = 0 and k c < 0.
∫ +∞

v

ds

s (s + v1)
1
2

= δ |ξ | (
along l±5

)
, (3.57)

and

−
∫ v

−∞

ds

s (−s − v1)
1
2

= δ |ξ | (
along l±6

)
. (3.58)

Solving v from (3.56), we have

v = −α sech
2βξ . (3.59)

From (3.59) and v = f′(ξ ), we get

f (ξ) = α tanh βξ . (3.60)

Via (3.60) and u = f(ξ ) + λ(t, y, z), it is seen that the function in (2.20) is a solution of Eq. (1.8).

Similarly, solving v from (3.57), (3.58), and via f′(ξ ) = v, u = f(ξ ) + λ(t, y, z), we see that the functions in (2.23) and (2.24) are

solutions of Eq. (1.8).

Step 3. Constructing generalized tangent and cotangent function solutions with ξ
When h0 = h1 = 0 and k c < 0, the graphs of (3.38) are as Fig. 3.

In Fig. 3, the expressions of the curves are as follows:

l±7 : w = ±δ v (v + v1)
1
2 , −v1 ≤ v < +∞; (3.61)

and

l±8 : w = ∓δ v (−v − v1)
1
2 , −∞ < v ≤ −v1. (3.62)

Substituting (3.61) and (3.62) into dv
w = dξ respectively, and integrating them along the corresponding curves, we have∫ +∞

v

ds

s (s + v1)
1
2

= δ |ξ | (
along l±7

)
, (3.63)

and ∫ v

−∞

ds

s (−s − v1)
1
2

= −δ |ξ | (
along l±8

)
. (3.64)

Completing the integrals, (3.63) and (3.64) become

arctan

(√
v + v1√−v1

)
= β |ξ |, (3.65)

and

arctan

(√−v − v1√
v1

)
= β |ξ |. (3.66)
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Solving v from (3.65) and (3.66) respectively, and via f′(ξ ) = v, u = f(ξ ) + λ(t, y, z), we obtain the functions in (2.29) and (2.30).

Note that if u = f(ξ ) + λ(t, y, z) is a solution of Eq. (1.8), then so is u = f (ξ + π
2 )+ λ(t, y, z). Therefore, from (2.29) and (2.30)

we get (2.33) and (2.34). These complete the derivations based on ξ = k x + ψ(y, z) − c t.

Part 2. The derivations based on η
Substituting

u = g(η)+ λ(t, y, z), (3.67)

into Eq. (1.8), it follows that

[−6k2g′′(η)g′′(η)− 6k2g′(η)g′′′(η)+ cg′′′(η)+ k3g(5)(η)]ψyψz + [c g′′(η)− 6k2g′(η)g′′(η)+ k3g(4)(η)]ψyz = 0. (3.68)

Clearly, Eq. (3.68) holds if and only if

−6k2(g′′)2(η)− 6k2g′(η)g′′′(η)+ c g′′′(η)+ k3 g(5)(η) = 0, (3.69)

and

c g′′(η)− 6k2g′(η)g′′(η)+ k3g(4)(η) = 0. (3.70)

Since Eq. (3.69) comes from taking the derivative on both sides of Eq. (3.70), we only study Eq. (3.70). Integrating Eq. (3.70) once,

we have

c

k3
g′ − 3

k
g′ 2 + g′′′ = r0, (3.71)

where r0 is an integral constant. Letting

μ = g′, (3.72)

Eq. (3.71) becomes

μ′′ = r0 − c

k3
μ + 3

k
μ2. (3.73)

Letting � = μ′, from (3.73) it yields a planar system⎧⎪⎪⎨
⎪⎪⎩

dμ

dη
= �,

d�

dη
= r0 − c

k3
μ + 3

k
μ2,

(3.74)

with the first integral

�2 = 2

(
r1 + r0 μ − c

2 k3
μ2 + 1

k
μ3

)
, (3.75)

where r1 is another integral constant. Let

μ0 = c

6 k2
, (3.76)

and

μ1 = c

2 k2
. (3.77)

The following derivations are divided into three steps, too.

Step 1. Constructing generalized fractional function solution with η

Taking r0 = c2

12k5 and r1 = − c3

216 k7 , then (3.75) possesses graphs as Fig. 4.

In Fig. 4, the curves possess expressions as follows:

�±
1 : � = ±δ(μ − μ0)

3
2 , μ0 < μ < +∞; (3.78)

and

�±
2 : � = ±δ(−μ + μ0)

3
2 , −∞ < μ < μ0. (3.79)

Substituting (3.78) and (3.79) into dμ
�

= dη respectively, and integrating them along the corresponding curves, we have∫ +∞

μ

ds

(s − μ0)
3
2

= δ |η| (
along �±

1

)
, (3.80)

and ∫ μ

−∞

ds

(μ0 − s)
3
2

= δ |η| (
along �±

2

)
. (3.81)
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(a) k > )b(0 k < 0

Fig. 4. The graphs of (3.75) when r0 = c2

12 k5 and r1 = − c3

216 k7 .

(a) k > 0 and c < 0 (b) k < 0 and c < 0

Fig. 5. The graphs of (3.75) when r0 = r1 = 0 and k c < 0.
Solving μ from one of (3.80) or (3.81), and via (3.67) and (3.72), we get the function in (2.18).

Step 2. Constructing generalized hyperbolic tanh and coth function solutions with η
Taking r0 = r1 = 0 and k c < 0, then the graphs of (3.75) are as Fig. 5.

In Fig. 5, the expressions of the curves are as follows:

�±
3 : � = ∓δ μ(μ − μ1)

1
2 , μ1 ≤ μ < 0; (3.82)

�±
4 : � = ±δ μ(−μ + μ1)

1
2 , 0 < μ ≤ μ1; (3.83)

�±
5 : � = ±δ μ(μ − μ1)

1
2 , 0 < μ < +∞; (3.84)

and

�±
6 : � = ∓δ μ(−μ + μ1)

1
2 , −∞ < μ < 0. (3.85)

Substituting (3.82)–(3.85) into dμ
�

= dη respectively, and integrating them along the corresponding curves, we have

−
∫ μ

μ1

ds

s (s − μ1)
1
2

= δ |η| (
along �±

3

)
, (3.86)

∫ μ1

μ

ds

s (−s + μ1)
1
2

= δ |η| (
along �±

4

)
, (3.87)
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(a) k > 0 and c > 0 (b) k < 0 and c < 0

Fig. 6. The graphs of (3.75) when r0 = r1 = 0 and k c > 0.
∫ +∞

μ

ds

s (s − μ1)
1
2

= δ |η| (
along �±

5

)
, (3.88)

and

−
∫ μ

−∞

ds

s (−s + μ1)
1
2

= δ |η| (
along �±

6

)
. (3.89)

Solving μ respectively from (3.86)–(3.89), and via (3.67) and (3.72), we get the functions in (2.21), (2.22), (2.25) and (2.26).

Step 3. Constructing generalized tangent and cotangent function solutions with η
Taking r0 = r1 = 0 and k c > 0, the graphs of (3.75) are as Fig. 6.

In Fig. 6, the expressions of the curves are as follows:

�±
7 : � = ±δ μ(μ − μ1)

1
2 , μ1 ≤ μ < +∞; (3.90)

and

�±
8 : � = ∓δ μ(−μ + μ1)

1
2 , −∞ < μ ≤ μ1. (3.91)

Substituting (3.90) and (3.91) into dμ
w = dη respectively, and integrating them along the corresponding curves, we have∫ +∞

μ

ds

s (s − μ1)
1
2

= δ |η| (
along �±

7

)
, (3.92)

and

−
∫ μ

−∞

ds

s (−s + μ1)
1
2

= δ |η| (
along �±

8

)
. (3.93)

Solving μ respectively from (3.92) and (3.93), and via (3.67), (3.72), we get the functions in (2.27) and (2.28).

Note that if u = g(η) + λ(t, y, z) is a solution of Eq. (1.8), then so is u = g(η + π
2 )+ λ(t, y, z). Therefore, from (2.27) and (2.28)

we obtain the functions in (2.31) and (2.32).

Similarly to the derivations of Propositions 2.1 and 2.2, we can derive the Propositions 2.3 and 2.4. Hereto, we have finished

the derivations for our main results.

4. Conclusions

In this paper, employing two methods we have studied the nonlinear wave solutions for Eqs. (1.8) and (1.9). We have obtained

many new expressions of the solutions which were listed in Propositions 2.1–2.4. It is interesting that these expressions contain

some arbitrary functions. This property seems very special. Proposition 2.1 extends the results of reference [14] for Eq. (1.8),

that is, when the arbitrary functions ϕi(y, z) are replaced by the functions eriy+siz (i = 1, 2, 3), p(y, z) � 0 and γ (t, y, z) � 0,

the generalized multiple soliton solutions and generalized multiple singular soliton solutions can be reduced to the results of

reference [14]. Proposition 2.3 extends the results of reference [14] for Eq. (1.9), that is, when the arbitrary functions ϕi(z) are

replaced by the functions esiz (i = 1, 2, 3), p(z) � 0 and γ (z, t) � 0, the generalized multiple soliton solutions and generalized

multiple singular soliton solutions can be reduced to the results of reference [14].
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In Proposition 2.1, the generalized soliton solutions and the generalized singular soliton solutions for Eq. (1.8) contain the

factor ki x − ci t with ci = k3
i
, that is, there is relation between the coefficients of x and t. In Proposition 2.2, the nonlinear wave

solutions also contain the factor k x − c t or k x + c t, but k and c are independent.

Similarly, in Proposition 2.3, the generalized soliton solutions and the generalized singular soliton solutions for Eq. (1.9)

contain the factor ki x + ri y − ci t with ci = k2
i
ri, that is, there is relation between the coefficients of x, y and t. In Proposition 2.4,

the nonlinear wave solutions also contain the factor k x + r y − c t or k x + r y + c t, but k, r and c are independent.

These imply that these two methods are effective in constructing the nonlinear wave solutions of Eqs. (1.8) and (1.9). But

there are respective merits and demerits. It is worth noting that there might be more efficient method to construct the nonlinear

wave solutions of Eqs. (1.8) and (1.9), which could be our next goal.

Finally, the correctness of all the solutions listed in the four propositions are validated by the mathematical software.
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