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Abstract. In this paper, we study the nonlinear wave solutions of the general-
ized b-equation involving two parameters b and k. Let c be constant wave speed,

c5 = 1
2

(
1 + b−

√
(1 + b)(1 + b− 8k)

)
, c6 = 1

2

(
1 + b+

√
(1 + b)(1 + b− 8k)

)
.

We obtain the following results:

1. If −∞ < k < 1+b
8

and c ∈ (c5, c6), then there are three types of explicit
nonlinear wave solutions, hyperbolic smooth solitary wave solution, hyperbolic

peakon wave solution and hyperbolic blow-up solution.

2. If −∞ < k < 1+b
8

and c = c5 or c6, then there are two types of explicit
nonlinear wave solutions, fractional peakon wave solution and fractional blow-

up solution.

3. If k = 1+b
8

and c = b+1
2

, then there are two types of explicit nonlinear
wave solutions, fractional peakon wave solution and fractional blow-up solution.

Not only is the existence of these solutions shown, but their concrete expres-

sions are presented. We also reveal the relationships among these solutions.
Besides, the correctness of these solutions is tested by using the software Math-

ematica.

1. Introduction. Consider the nonlinear equation

ut + 2kux − uxxt + (1 + b)u2ux = buxuxx + uuxxx, (1)

where b, k are two real parameters, and b > 1 is a positive integer. Eq.(1) is called
generalized b-equation because it is the generalized form of the following b-equation

ut + 2kux − uxxt + (1 + b)uux = buxuxx + uuxxx, (2)

which was presented by Degasperis, Holm and Hone [1, 2]. Clearly, when b = 2, 3,
Eq.(2) respectively changes into the CH equation

ut + 2kux − uxxt + 3uux = 2uxuxx + uuxxx, (3)

and the DP equation

ut + 2kux − uxxt + 4uux = 3uxuxx + uuxxx. (4)

Camassa and Holm [3] showed that the CH equation is integrable and has peaked
solitons. Cooper and Shepard [4] derived an approximate solitary wave solution of
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the CH equation by using some variational functions. Constantin [5, 6] gave the
mathematical description of the existence of interacting solitary waves and showed
that the peakons are stable for the CH equation. Boyd [7] derived a perturbation
series which converges even at the peakon limit, and gave three analytical represen-
tations for the spatially periodic generalization of the peakon, called “the coshoidal
wave” in the CH equation. Recently, the CH equation has been studied successively
by many authors (see for instance in Refs. [8]-[12]).

The DP equation was given by Degasperis and Procesi [13]. Lundmark and
Szmigielski [14, 15] presented an inverse scattering approach for computing the
n-peakon solutions of the DP equation and gave the concrete expressions of the
3-peakon solutions. Chen and Tang [16] showed that in DP equation there are
the kink-like waves. Guha [17] proposed an Euler-Poincare formalism of the DP
equation.

The solutions of the b-equation were studied numerically for various values of b
by Holm and Staley [18]. For arbitrary b > 1, Guo and Liu [19] showed that Eq.(2)
has periodic cusp waves and constructed their expressions.

To study the bifurcation of peakon waves, Liu and Qian [20] suggested a gener-
alized CH equation

ut + 2kux − uxxt + 3u2ux = 2uxuxx + uuxxx. (5)

Similarly, to investigate the change of peakon waves, Wazwaz [21, 22] proposed a
generalized DP equation

ut − uxxt + 4u2ux = 3uxuxx + uuxxx (6)

and a generalized b-equation

ut − uxxt + (b+ 1)u2ux = buxuxx + uuxxx. (7)

Since the CH and the DP equations possess rich structure and property, many
authors were interested in their modified forms, Eqs.(5), (6) and (7). Tian and
Song [23] gave some physical explanation for Eq.(5). Shen and Xu [24] discussed
the existence of both smooth and non-smooth travelling waves for Eq.(5). Letting
c denote the constant wave speed of travelling waves, for some special values of
c, the exact travelling wave solutions were studied for Eq.(5) and Eq.(6). When
c = 1, Khuri [25] obtained a singular wave solution composed of triangle functions
for Eq.(5). When c = 1 and c = 2 respectively, Wazwaz [22] obtained eleven exact
travelling wave solutions composed of triangle functions or hyperbolic functions for
Eq.(5), while Liu et al [26] got a peakon solution which is composed of hyperbolic
functions for Eq.(5). He et al [27] used integral bifurcation method to obtain some
exact solutions for Eq.(5). Liu and Guo [28] investigated the periodic blow-up
solutions and their limit forms for Eq.(5). When c = 5/2, Wazwaz [22] obtained
nine exact travelling wave solutions composed of hyperbolic functions for Eq.(6),
and Liu et al [26] got a peakon solution which is composed of hyperbolic functions for
Eq.(6). Zhang et al [29] used the bifurcation theory of dynamical systems to show
the existence of some travelling waves for Eq.(5). Wang and Tang [30] obtained two
exact solutions for Eq.(5) when c = 1

3 and c = 3 respectively, and gave two exact

solutions for Eq.(6) when c = 1
4 and c = 4 respectively. Yomba [31, 32] gave two

methods, the sub-ODE method and the generalized auxiliary equation method, to
look for the exact travelling wave solutions for Eq.(5) and Eq.(6). He et al [33] used
the bifurcation method of dynamical systems to obtain some exact solutions for
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Eq.(6). Liu and Pan [34] studied the coexistence of multifarious explicit nonlinear
wave solutions for Eq.(5) and Eq.(6).

When the wave speed c = 2+b
2 , Wazwaz [22] obtained two solitary wave solutions

for Eq.(7). When c = 1
1+b ,

2+b
2 , 1 + b respectively, Liu [35] investigated the solitary

wave solution for Eq.(7).

In this paper, let c be constant wave speed and c5 = 1
2

(
1+b−

√
(1+b)(1+b−8k)

)
and c6 = 1

2

(
1+b+

√
(1+b)(1+ |!b−8k)

)
. we extend the previous results in the fol-

lowing three aspects. (i) When −∞ < k < 1+b
8 and c ∈ (c5, c6), there are three

types of explicit nonlinear wave solutions, hyperbolic smooth solitary wave solu-
tion, hyperbolic peakon wave solution and hyperbolic blow-up solution. (ii) When
−∞ < k < 1+b

8 and c = c5 or c6, there are two types of explicit nonlinear wave so-
lutions, fractional peakon wave solution and fractional blow-up solution. (iii) When
k = 1+b

8 and c = b+1
2 , there are two types of explicit nonlinear wave solutions,

fractional peakon wave solution and fractional blow-up solution. Not only is the
existence of these solutions shown, but their concrete expressions are presented.
Also the relationships among these solutions are revealed, and the correctness of
these solutions is tested as well by using the software Mathematica.

We organize this paper as follows. In Section 2, we derive the traveling wave
system of Eq.(1) and draw its bifurcation phase portraits which are the basis for
constructing nonlinear wave solutions. In Section 3, the smooth solitary wave so-
lution is derived. In Section 4, the hyperbolic peakon wave solution is built. In
Section 5, the fractional peakon wave solutions are given. In Section 6, the rela-
tionships among the solitary wave solutions are revealed. In Section 7, the blow-up
solutions are constructed. A brief conclusion is given in Section 8.

2. Preliminaries. For a given constant c > 0, substituting u = ϕ(ξ) with ξ =
x− c t into Eq.(1), it follows that

− c ϕ′ + 2kϕ′ + c ϕ′′′ + (1 + b)ϕ2ϕ′ = bϕ′ϕ′′ + ϕϕ′′′. (8)

Integrating (8) once, we have

(ϕ− c)ϕ′′ = g + (2k − c)ϕ+
1 + b

3
ϕ3 − b− 1

2
(ϕ′)2, (9)

where g is the constant of integration .
Letting y = ϕ′, it yields the following planar system

dϕ

dξ
= y,

dy

dξ
=
g + (2k − c)ϕ+ 1+b

3 ϕ3 − b−1
2 y2

ϕ− c
.

(10)

By using the transformation dτ = dξ
ϕ−c , (10) can be written as the planar system

dϕ

dτ
= (ϕ− c)y,

dy

dτ
= g + (2k − c)ϕ+

1 + b

3
ϕ3 − b− 1

2
y2.

(11)

Let

a0 =
6g + 12kc− 6c2 + 2(1 + b)c3

3(b− 1)
, (12)
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a1 =
2(1 + b)c2 − 2c+ 4k

b
, (13)

a2 = 2c, (14)

a3 =
2(1 + b)

3(2 + b)
, (15)

and

H(ϕ, y) = (ϕ− c)b−1
[
a0 + a1(ϕ− c) + a2(ϕ− c)2 + a3(ϕ− c)3 − y2

]
. (16)

It is easy to check that
H(ϕ, y) = h (17)

is the first integration for both systems (10) and (11). Therefore both systems (10)
and (11) have the same topological phase portraits except the line ϕ = c. This
implies that one can study the phase portraits of system (10) from that of system
(11).

Now we are in a position to study the bifurcation phase portraits of system (11).
Let

z = f(ϕ), (18)

where

f(ϕ) = g + (2k − c)ϕ+
1 + b

3
ϕ3. (19)

We have
f ′(ϕ) = (1 + b)ϕ2 + 2k − c. (20)

When g = 0, it follows

f

(
±
√
c− 2k

1 + b

)
= ∓2(c− 2k)3/2

3
√

1 + b
. (21)

Let

ϕ∗ =

√
3(c− 2k)

1 + b
, (22)

ϕ0 =

√
c− 2k

1 + b
, (23)

and

g0 =
2(c− 2k)3/2

3
√

1 + b
. (24)

We draw the graph of z = f(ϕ) as Fig.1.

(a) g < −g0 (b) g = −g0 (c) −g0 < g < 0 (d) g = 0

(e) 0 < g < g0 (f) g = g0 (g) g > g0 (h) c ≤ 2k

Fig.1 The graph of z = f(ϕ), where (a)–(g) correspond to c > 2k.
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From (11) and (19), it is seen that (ϕ̃, 0) is a singular point of system (11) if and
only if f(ϕ̃) = 0. At the singular point (ϕ̃, 0), it is easy to see that the linearized
system of system (11) has the eigenvalues

λ±(ϕ̃, 0) = ±
√

(ϕ̃− c)f ′(ϕ̃). (25)

From (17) and (25) we see that the singular point (ϕ̃, 0) is of the following
properties:

(i) If (ϕ̃− c)f ′(ϕ̃) > 0, then (ϕ̃, 0) is a saddle point of system (11).
(ii) If (ϕ̃− c)f ′(ϕ̃) = 0, then (ϕ̃, 0) is a degenerate saddle point of system (11).
(iii) If (ϕ̃− c)f ′(ϕ̃) < 0, then (ϕ̃, 0) is a center point of system (11).
Let

y0 =
2(1 + b)c3 − 6c2 + 12kc+ 6g

3(b− 1)
. (26)

Similarly, it can be seen that if y0 > 0, then (c,−√y0) and (c,
√
y0) are two saddle

points of system (11). According to the analysis above and the values of H(ϕ, y) at
the singular points, we obtain four bifurcation curves

g1(c) =
2(c− 2k)3/2

3
√

1 + b
, (27)

g2(c) =
−2b2c3 + 6bc∆2

0 + 2(b− 1)
√
b(2 + b)∆3

0

3b2(1 + b)2
, (28)

g3(c) = c2 − 2kc− (1 + b)c3

3
, (29)

g4(c) =
−2(c− 2k)3/2

3
√

1 + b
, (30)

where
∆0 =

√
(1 + b)c− c2 − 2(1 + b)k. (31)

Solving gi(c) = gj(c) (i, j =1–4 and i 6= j) for c, we get the following seven
values

c1 =
1−

√
1− 8k(1 + b)

2(1 + b)
, (32)

c2 =
1 +

√
1− 8k(1 + b)

2(1 + b)
, (33)

c3 =
2
(
1−
√

1− 2k − 2bk
)

1 + b
, (34)

c4 =
2
(
1 +
√

1− 2k − 2bk
)

1 + b
, (35)

c5 =
1

2

(
1 + b−

√
(1 + b)(1 + b− 8k)

)
, (36)

c6 =
1

2

(
1 + b+

√
(1 + b)(1 + b− 8k)

)
, (37)

and

c7 =
2(1 + b)− 2

√
(1 + b) (1 + b− 2k(4 + 2b+ b2))

4 + 2b+ b2
. (38)

It is easy to see the following inequalities:
(i) When k < 0, it follows that

2k < c5 < c3 < c7 < c1 < c2 < c4 < c6. (39)
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(ii) When k = 0, it follows that

0 = c1 = c3 = c5 = c7 < c2 =
1

1 + b
< c4 =

4

1 + b
< c6 = 1 + b. (40)

(iii) When 0 < k < 1
8(1+b) , it follows that

0 < 2k < c5 < c3 < c1 < c2 < c4 < c6. (41)

(iv) When k = 1
8(1+b) , it follows that

0 < 2k < c5 < c3 < c2 = c1 < c4 < c6. (42)

(v) When 1
8(1+b) < k < 1+b

8 , c1, c2 are complex and it follows that

0 < 2k < c5 < c3 < c4 < c6. (43)

(vi) When k = 1+b
8 , c1, c2, c3, c4 are complex, and c5 = c6 = (1 + b)/2.

(vii) When k > 1+b
8 , ci (i = 1–6) are complex.

According to above discussions, we obtain the bifurcation phase portraits of
system (11) as Fig.2–Fig.7.

Fig.2 The bifurcation phase portraits of system (11) when k < 0.
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Fig.3 The bifurcation phase portraits of system (11) when k = 0.

Fig.4 The bifurcation phase portraits of system (11) when 0 < k < 1
8(1+b)

.
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Fig.5 The bifurcation phase portraits of system (11) when k = 1
8(1+b)

.

Fig.6 The bifurcation phase portraits of system (11) when 1
8(1+b)

< k < 1+b
8

.

k = 1+b
8

k > 1+b
8

Fig.7 The bifurcation phase portraits of system (11) when k ≥ 1+b
8

.



THE EXPLICIT NONLINEAR WAVE SOLUTIONS OF THE GENERALIZED b-EQ. 1037

3. Smooth solitary wave solution. For Eq.(1) with k = 0 and c = 2+b
2 , Wazwaz

[22] got a smooth solitary wave solution

u∗1(x, t) = −3(2 + b)

2(2 + b)
sech2

(
x− 2 + b

2
t

)
. (44)

In this section, we extend Wazwaz’s result as follows.

Theorem 1. For Eq.(1), if the parameter k satisfies −∞ < k < 1+b
8 and wave

speed c satisfies c5 < c < c6 (see (36), (37) for c5 and c6), then there is a smooth
solitary wave solution

u1(x, t, c) =
−bc+ ∆(c)− 3∆(c) sech2η(c)(x− ct)

b(1 + b)
, (45)

where
∆(c) =

√
b(2 + b) [(1 + b)c− c2 − 2(1 + b)k], (46)

and

η(c) =

√
∆(c)

2b(2 + b)
. (47)

The smooth solitary wave solution u1(x, t, c) is of the following properties:
(1◦) When c→ c5 + 0, u1(x, t, c) becomes trivial solution

u =

√
(1 + b)(1 + b− 8k)− 1− b

2(1 + b)
. (48)

(2◦) When c→ c6 − 0, u1(x, t, c) becomes trivial solution

u = −
√

(1 + b)(1 + b− 8k) + 1 + b

2(1 + b)
. (49)

Proof. For given c ∈ (c5, c6), from Fig.2–Fig.6 it is seen that on the bifurcation
curve g = g2(c), there is a homoclinic orbit connecting with the saddle point (ϕ̃, 0)
and passing through the point (ϕ̃∗, 0), where

ϕ̃ =
−bc+ ∆(c)

b(1 + b)
, (50)

and

ϕ̃∗ = −bc+ 2∆(c)

b(1 + b)
. (51)

On the ϕ–y plane, the homoclinic orbit is of the expression

y2 =
2(1 + b)

3(2 + b)
(ϕ̃− ϕ)2(ϕ− ϕ̃∗), where ϕ̃∗ ≤ ϕ < ϕ̃. (52)

Substituting (52) into the first equation of system (10) and integrating it, we
have ∫ ϕ

ϕ̃∗

ds

(ϕ̃− s)
√
s− ϕ̃∗

=

√
2(1 + b)

3(2 + b)
|ξ|, where ϕ̃∗ ≤ ϕ < ϕ̃0. (53)

Completing the above integral and solving the equation for ϕ, it follows that

ϕ = ϕ̃∗ − (ϕ̃∗ − ϕ̃) tanh2(η(c)ξ) = ϕ̃+ (ϕ̃∗ − ϕ̃) sech2(η(c)ξ). (54)

Noticing that the transformation u = ϕ(ξ), from (54) we get the hyperbolic
smooth solitary wave solution u1(x, t, c). From (46) it is seen that ∆(c)→ 0 when
c → c5 + 0 or c → c6 − 0. This implies that u1(x, t, c) is of the properties listed in
Theorem 1. The proof is completed.
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Remark 1. It is easy to see that when k = 0, c5 and c6 become 0 and 1 + b
respectively. Clearly, it holds that 0 < 2+b

2 < 1 + b. On the other hand, when k = 0

and c = 2+b
2 , u1(x, t, c) becomes u∗1(x, t). This implies that u∗1(x, t) is a special case

of u1(x, t, c).

4. Hyperbolic peakon wave solution. In [22] Wazwaz conjectured that there
is not peakon wave solution in Eq.(1). When k = 0 and c = 2+b

2 , Liu [35] verified
that there is peakon wave solution

u∗2(x, t) =
3(2 + b)(2 + 3b+ b2)

2(1 + b)
[√

3(2 + b) cosh 1
2

(
x− 2+b

2 t
)

+
√

8 + 6b+ b2 sinh 1
2

∣∣x− 2+b
2 t
∣∣ ]2 .

(55)
In this section, we extend the hyperbolic peakon wave solution as follows.

Theorem 2. In Eq.(1), assume that −∞ < k < 1+b
8 and denote ci (i=1–7) as

(32)–(38). Consider the following five cases:
Case 1 k < 0, c7 < c < c6 and c 6= c2.
Case 2 k = 0, 0 < c < 1 + b and c 6= 1

1+b .

Case 3 0 < k < 1
8(1+b) , c5 < c < c6, c 6= c1 and c 6= c2.

Case 4 k = 1
8(1+b) , c5 < c < c6 and c 6= c2.

Case 5 1
8(1+b) < k < 1+b

8 and c5 < c < c6.

Under one of the five cases above, Eq.(1) has a hyperbolic peakon wave solution

u2(x, t, c) =
∆(c)−bc
b(1+b)

+
3∆(c)(2bc+b2c−∆(c))

b(1+b)
(√

3∆(c) coshη(c)(x−ct)+∆∗sinh |η(c)(x−ct)|
)2 ,

(56)
where ∆(c) and η(c) are given in (46), (47) and

∆∗ =
√

2bc+ b2c+ 2∆(c) . (57)

Proof. Note that under one of the five cases and when g = g2(c), system (10) has
three singular points (ϕ̃, 0), (ϕ◦+, 0) and (ϕ◦−, 0), where ϕ̃ is given in (50) and

ϕ◦± =
1

3

[
−ϕ̃±

√
12(c− 2k)

1 + b
− 3 ϕ̃ 2

]
. (58)

Now we introduce nine hypotheses below
(H1) k < 0 and c ∈ (c7, c2).

(H2) k = 0 and c ∈
(

0, 1
1+b

)
.

(H3) 0 < k < 1
8(1+b) and c ∈ (c1, c2).

(H4) k < 0 and c ∈ (c2, c6).

(H5) k = 0 and c ∈
(

1
1+b , 1 + b

)
.

(H6) 0 < k < 1
8(1+b) and c ∈ (c5, c1).

(H7) 0 < k < 1
8(1+b) and c ∈ (c2, c6).

(H8) k = 1
8(1+b) , c ∈ (c5, c6) and c 6= c2.

(H9)
1

8(1+b) < k < 1+b
8 and c ∈ (c5, c6).

Under one of (Hi) (i = 1, 2, 3), it is easy to see the following inequalities

ϕ◦− < c < ϕ◦+ < ϕ̃. (59)
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Under one of (Hj) (j = 4–9), it follows that

ϕ◦− < ϕ̃ < ϕ◦+ < c. (60)

Therefore, under one of the nine hypotheses, (ϕ◦+, 0) is a center point. The
boundary of the closed orbits is a homoclinic orbit which passes (c, 0) and connects
with (ϕ̃, 0).

On the ϕ–y plane, the boundary is of expression

y = ±

√
2(1 + b)

3(2 + b)
(ϕ̃−ϕ)

√
ϕ− ϕ̃∗, c ≤ ϕ < ϕ̃, under one of (Hi) (i = 1−3), (61)

or

y = ±

√
2(1 + b)

3(2 + b)
(ϕ−ϕ̃)

√
ϕ− ϕ̃∗, ϕ̃ < ϕ ≤ c, under one of (Hj) (j = 4−9). (62)

Substituting the expressions of the boundary into dϕ
dξ = y and integrating it along

the boundary, it follows that∫ c

ϕ

ds

(s− ϕ̃)
√
s− ϕ̃∗

=

√
2(1 + b)

3(2 + b)
|ξ|. (63)

Completing the above integral and solving the equation for ϕ, it follows that

ϕ =
∆(c)− bc
b(1 + b)

+
3∆(c)(2bc+ b2c−∆(c))

b(1 + b)
(√

3∆(c) cosh η(c) ξ +
√

2bc+ b2c+ 2∆(c) sinh |η(c) ξ|
)2 .

(64)
From the expression (64) and noting that u = ϕ(ξ) with ξ = x − ct, we get the

hyperbolic peakon wave solution u2(x, t, c) as (56).

Remark 2. From (56) it is easy to see that u2(x, t, c) is of the following properties:
(1◦) Suppose k ≤ 0. Then there is a bifurcation value c2 in the interval (c7, c6).

u2(x, t, c) represents an anti-peakon wave for c ∈ (c7, c2), a peakon wave for c ∈
(c2, c6). When c→ c2, u2(x, t, c)→ c2.

(2◦) Suppose 0 < k < 1
8(1+b) . Then there are two bifurcation values c1 and

c2 in the interval (c5, c6). u2(x, t, c) represents a peakon wave for c ∈ (c5, c1) or
c ∈ (c2, c6), an anti-peakon wave for c ∈ (c1, c2). When c→ c1 and c2 respectively,
u2(x, t, c)→ c1 and c2.

(3◦) Suppose k = 1
8(1+b) . Then there is a bifurcation value c2 in the interval

(c5, c6). u2(x, t, c) represents a peakon wave for c ∈ (c5, c6) and c 6= c2. When
c→ c2, u2(x, t, c)→ c2.

(4◦) Suppose 1
8(1+b) < k < 1+b

8 . Then there is not bifurcation value in the

interval (c5, c6). u2(x, t, c) represents a peakon wave for c ∈ (c5, c6).
(5◦) When k = 0 and c = 2+b

2 , u2(x, t, c) becomes u∗2(x, t).
For the limit functions of u2(x, t, c), when c→ c7+0, c5+0 and c6−0 respectively,

we will make discussions in Section 6.

5. Fractional peakon wave solutions. In [35] Liu obtained a fractional peakon
wave solution

u∗3(x, t) =
6(2 + b)(√

6 +
√

1 + b |x− (1 + b)t |
)2 − 1. (65)

In this section, we extend the fractional peakon wave solutions as follows.
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Theorem 3. (i) If −∞ < k ≤ 0, then Eq.(1) has a fractional peakon wave solution

u3(x, t) = −δ + 1 + b

2(1 + b)
+

6(2 + b)(1 + b+ δ)

(1 + b)
(
2
√

3 +
√

1 + b+ δ |x− c6t|
)2 , (66)

where
δ =

√
(1 + b) (1 + b− 8k). (67)

(ii) If 0 < k < 1+b
8 , then Eq.(1) has two fractional peakon wave solutions u3(x, t)

and

u4(x, t) =
δ − 1− b
2(1 + b)

+
6(2 + b)(1 + b− δ)

(1 + b)
(
2
√

3 +
√

1 + b− δ |x− c5t|
)2 . (68)

(iii) If k = 1+b
8 , then Eq.(1) has a unique peakon wave solution

u5(x, t) = −1

2
+

6(2 + b)(
2
√

3 +
√

1 + b
∣∣x− 1+b

2 t
∣∣)2 . (69)

Proof. Firstly, we derive the expression of u3(x, t). From the bifurcation phase
portraits, it is seen that when −∞ < k < 1+b

8 , c = c6 and g = g4(c), system (10)
has two singular points (p1, 0) and (p2, 0), where

p1 = −1 + b+ δ

2(1 + b)
, (70)

and

p2 =
1 + b+ δ

1 + b
. (71)

The singular point (p1, 0) is a degenerate saddle point, and the singular point
(p2, 0) is a center point.

The boundary of the closed orbits surrounding the center point (p2, 0) is of ex-
pression

y2 =
2(1 + b)

3(2 + b)
(ϕ− p1)3, p1 < ϕ < c6. (72)

Substituting the expression of the boundary into dϕ
dξ = y and integrating it along

the boundary, it follows that∫ c6

ϕ

ds

(s− p1)
3
2

=

√
2(1 + b)

3(2 + b)
|ξ|. (73)

Completing the integral above and solving the equation for ϕ, we get

ϕ = −δ + 1 + b

2(1 + b)
+

6(2 + b)(1 + b+ δ)

(1 + b)
(
2
√

3 +
√

1 + b+ δ |ξ|
)2 . (74)

Noticing that u = ϕ(ξ), we obtain the fractional peakon wave solution u3(x, t)
as (66).

Secondly, we derive the expression of u4(x, t). Similarly, from the bifurcation
phase portraits, we see that when 0 < k < 1+b

8 , c = c5 and g = g4(c), system (10)
has two singular points (q1, 0) and (q2, 0), where

q1 =
δ − 1− b
2(1 + b)

, (75)

and

q2 =
1 + b− δ

1 + b
. (76)
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The singular point (q1, 0) is a degenerate saddle point, and (q2, 0) is a center point.
The boundary of the closed orbits surrounding the center point (q2, 0) possesses
expression

y2 =
2(1 + b)

3(2 + b)
(ϕ− q1)3, q1 < ϕ < c5. (77)

Substituting the expression of the boundary into dϕ
dξ = y and integrating it along

the boundary, it follows that∫ c5

ϕ

ds

(s− q1)
3
2

=

√
2(1 + b)

3(2 + b)
|ξ|. (78)

Completing the integral above and solving the equation for ϕ, we have

ϕ =
δ − 1− b
2(1 + b)

+
6(2 + b)(1 + b− δ)

(1 + b)
(
2
√

3 +
√

1 + b− δ |ξ|
)2 . (79)

From u = ϕ(ξ), we obtain the fractional peakon wave solution u4(x, t) as (68).
Thirdly, we show the uniqueness of peakon wave solution when k = 1+b

8 . Note

that when k = 1+b
8 , it follows that c5 = c6 = 1+b

2 . Therefore, there is not hyperbolic
peakon wave solution. On the other hand, u3(x, t) and u4(x, t) become u5(x, t).
That is, u5(x, t) is a unique peakon wave solution when k = 1+b

8 .

Remark 3. Obviously, when k = 0, it follows that c6 = δ = 1+b, 1+b+δ = 2(1+b).
Thus u3(x, t) becomes u∗3(x, t) when k = 0. This implies that u∗3(x, t) is a special
case of u3(x, t).

6. The relationships among the solitary wave solutions. In this section,
we point out the relationships among u1(x, t, c), u2(x, t, c), u3(x, t) and u4(x, t) as
follows.

Theorem 4. Among u1(x, t, c), u2(x, t, c), u3(x, t) and u4(x, t) there are the
following relationships:

(1◦) When k < 0 and c→ c7 + 0, u2(x, t, c) becomes the smooth solitary wave
solution u1(x, t, c7) (about u1(x, t, c) and u2(x, t, c) see (45) and (56)).

(2◦) When −∞ < k < 1+b
8 and c→ c6−0, the hyperbolic peakon wave solution

u2(x, t, c) becomes the fractional peakon wave solution u3(x, t) (about u3(x, t) see
(66)).

(3◦) When 0 < k < 1+b
8 and c → c5 + 0, the hyperbolic peakon wave solution

u2(x, t, c) becomes the fractional peakon wave solution u4(x, t) (about u4(x, t) see
(68)).

Proof. Firstly, When k < 0 and c→ c7 + 0, it follows that ∆∗ → 0 and 2bc+ b2c−
∆(c)→ −3∆(c7). Hence,

lim
c→c7+0

u2(x, t, c)

= lim
c→c7+0

∆(c)−bc
b(1 + b)

+
3∆(c)(2bc+ b2c−∆(c))

b(1 + b)
(√

3∆(c)coshη(c) (x− ct) + ∆∗sinh |η(c)(x− ct)|
)2

=
∆(c7)− bc7
b(1 + b)

− 9∆2(c7)

b(1 + b)3∆(c7) cosh2 η(c7) (x− c7t)

=
∆(c7)− bc7 − 3∆(c7) sech2 η(c7) (x− c7t)

b(1 + b)
= u1(x, t, c7)
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Secondly, when −∞ < k < 1+b
8 and c → c6 − 0, it follows that ∆(c) → 0,

η(c)→ 0, 2bc+b2c−∆(c)→ 1
2b(2+b)(1+b+δ) and ∆∗ → 1√

2

√
b(2 + b)(1 + b+ δ).

If let

w(x, t, c) =
3∆(c)(2bc+ b2c−∆(c))

b(1 + b)
(√

3∆(c) cosh η(c) (x− ct) + ∆∗ sinh |η(c) (x− ct)|
)2 , (80)

then

lim
c→c6−0

w(x, t, c) = lim
c→c6−0

3∆(c)(2bc+ b2c−∆(c))

b(1 + b)
(√

3∆(c) + ∆∗η(c)|x− ct|+ o(
√

∆(c))
)2

=
6(2 + b)(1 + b+ δ)

b(1 + b)
(
2
√

3 +
√

1 + b+ δ |x− c6t|
)2 . (81)

Further

lim
c→c6−0

u2(x, t, c) = lim
c→c6−0

(
∆(c)− bc
b(1 + b)

+ w(x, t, c)

)
= −1 + b+ δ

2(1 + b)
+

6(2 + b)(1 + b+ δ)

(1 + b)
(
2
√

3 +
√

1 + b+ δ |x− c6t|
)2 = u3(x, t). (82)

Thirdly, when 0 < k < 1+b
8 and c → c5 + 0, it follows that ∆(c) → 0, η(c) → 0,

2bc+ b2c−∆(c)→ 1
2b(2 + b)(1 + b− δ) and ∆∗ → 1√

2

√
b(2 + b)(1 + b− δ). Further,

it follows that

lim
c→c5+0

w(x, t, c) = lim
c→c5+0

3∆(c)(2bc+ b2c−∆(c))

b(1 + b)
(√

3∆(c) + ∆∗η(c)|x− ct|+ o(
√

∆(c))
)2

=
6(2 + b)(1 + b− δ)

b(1 + b)
(
2
√

3 +
√

1 + b− δ |x− c5t|
)2 . (83)

Hence,

lim
c→c5+0

u2(x, t, c) = lim
c→c5+0

(
∆(c)− bc
b(1 + b)

+ w(x, t, c)

)
=
δ − 1− b
2(1 + b)

+
6(2 + b)(1 + b− δ)

(1 + b)
(
2
√

3 +
√

1 + b− δ |x− c5t|
)2 = u4(x, t). (84)

This completes the proof of Theorem 4.

7. Blow-up solutions. When k = 0 and c = 2+b
2 , Wazwaz [22] showed that Eq.(1)

has a blow-up solution

u∗4(x, t) =
3(2 + b)

2(b+ 1)
csch2 1

2

(
x− 2 + b

2
t

)
. (85)

When k = 0 and c = 1
1+b , 1 + b respectively, Liu [35] confirmed that Eq.(1) has

two blow-up solutions

u∗5(x, t) =
1

(1 + b)2

[
1 + b+ 3(2 + b) csch2 1√

2(1 + b)

(
x− t

1 + b

)]
, (86)

and

u∗6(x, t) =
6(2 + b)

(1 + b)[x− (1 + b)t]2
− 1. (87)

In this section, we extend the blow-up solutions as follows.
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Theorem 5. Consider Eq.(1).
(i) If −∞ < k ≤ 0, then there are two blow-up solutions which are hyperbolic

blow-up solution

u6(x, t, c) =
−bc+ ∆(c) + 3∆(c) csch2(η(c)(x− ct))

b(1 + b)
for c ∈ (c5, c6), (88)

and fractional blow-up solution

u7(x, t) = −δ + 1 + b

2(1 + b)
+

6(2 + b)

(1 + b)(x− c6t)2
. (89)

(ii) If 0 < k < 1+b
8 , then there are three blow-up solutions which are hyperbolic

blow-up solution u6(x, t, c) (c ∈ (c5, c6)), fractional blow-up solutions u7(x, t) and

u8(x, t) =
δ − 1− b
2(1 + b)

+
6(2 + b)

(1 + b)(x− c5t)2
. (90)

(iii) If k = 1+b
8 , then there is unique blow-up solution

u9(x, t) = −1

2
+

6(2 + b)

(1 + b)
(
x− 1+b

2 t
)2 . (91)

About c5, c6, ∆(c), η(c) and δ, see (36), (37), (46), (47) and (67).
Among these solutions, there are the following relationships:
(1◦) When k = 0 and c = 2+b

2 , u6(x, t, c) becomes u∗4(x, t).

(2◦) When k = 0 and c = 1
1+b , u6(x, t, c) becomes u∗5(x, t).

(3◦) When k = 0 and c = 1 + b, u7(x, t) becomes u∗6(x, t).
(4◦) When −∞ < k < 1+b

8 and c→ c6 − 0, u5(x, t, c) becomes u7(x, t).

(5◦) When 0 < k < 1+b
8 and c→ c5 + 0, u5(x, t, c) becomes u8(x, t).

Proof. Firstly, we derive the hyperbolic blow-up solution u6(x, t, c). From the b-
ifurcation phase portraits it is seen that when −∞ < k < 1+b

8 and c5 < c < c6,
on g = g2(c) there are two heteroclicic orbits connecting with (ϕ̃, 0) and going to
infinity. On ϕ–y plane their expressions are

y = ±(ϕ− ϕ̃)

√
2(1 + b)(ϕ− ϕ̃∗)

3(2 + b)
, for ϕ̃ < ϕ. (92)

Substituting the expressions into dϕ
dξ = y and integrating it along these two

heteroclinic orbits respectively, it follows that∫ ∞
ϕ

dϕ

(s− ϕ̃)
√
s− ϕ̃∗

=

√
2(1 + b)

3(2 + b)
|ξ|. (93)

Completing the integral and solving the equation for ϕ, it follows that

ϕ =
∆(c)− bc+ 3∆(c) csch2 η(c)ξ

b(1 + b)
. (94)

From (94) and noting that u = ϕ(ξ), we get the blow-up solution u6(x, t, c) as
(88).

Secondly, we derive the fractional blow-up solution u7(x, t). Note that when
−∞ < k < 1+b

8 , c = c6 and g = g4(c6), there are two heteroclinic orbits connecting
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with (p1, 0) and going to infinity. On ϕ–y plane, their expressions are

y = ±

√
2(1 + b)

3(2 + b)
(ϕ− p1)3/2, for ϕ > p1. (95)

Substituting the expressions into dϕ
dξ = y and integrating it along these two

heteroclinic orbits, we have∫ ∞
ϕ

(s− p1)−3/2 ds =

√
2(1 + b)

3(2 + b)
|ξ|. (96)

Finishing the integral and solving the equation for ϕ, we get

ϕ = −1 + b+ δ

2(1 + b)
+

6(2 + b)

(1 + b) ξ2
. (97)

From (97) and noting that u = ϕ(ξ), we obtain the fractional blow-up solution
u7(x, t) as (89).

Thirdly, we derive the fractional blow-up solution u8(x, t). Note that when 0 <
k < 1+b

8 , c = c5 and g = g4(c5), there are two heteroclinic orbits connecting with
(q1, 0) and going to infinity. On ϕ–y plane, these two orbits possess expressions

y = ±

√
2(1 + b)

3(2 + b)
(ϕ− q1)3/2, for ϕ > q1. (98)

Substituting the expressions into dϕ
dξ = y and integrating it along these two orbits,

it follows that ∫ ∞
ϕ

(s− q1)−3/2 ds =

√
2(1 + b)

3(2 + b)
|ξ|. (99)

Completing the integral and solving the equation for ϕ, we get

ϕ =
δ − 1− b
2(1 + b)

+
6(2 + b)

(1 + b) ξ2
. (100)

Via (100) and noting that u = ϕ(ξ), we obtain the fractional blow-up solution
u8(x, t) as (90).

Now, let us to show the uniqueness of the blow-up solution when k = 1+b
8 . Note

that when k = 1+b
8 , it follows that c5 = c6 = 1+b

2 . Consequently, there is not
hyperbolic blow-up solution. While u7(x, t) and u8(x, t) become u9(x, t). That is,
u9(x, t) is unique blow-up solution when k = 1+b

8 .
Finally, let us check the relationships among these blow-up solutions.

(1◦) When k = 0 and c = 2+b
2 , it follows ∆(c) = b(2+b)

2 , ∆(c) − bc = 0 and

η(c) = 1
2 . Therefore u6(x, t, c) becomes u∗4(x, t).

(2◦) When k = 0 and c = 1
1+b , it follows that ∆(c) = b(2+b)

1+b , η(c) =
√

1
2(1+b) ,

∆(c)−bc
2(1+b) = b and 3∆(c)

b(1+b) = 3(2+b)
(1+b)2 . Hence, u6(x, t, c) becomes u∗5(x, t).

(3◦) When k = 0, it follow c6 = 1 + b and δ = 1 + b. Consequently u7(x, t)
becomes u∗6(x, t).

(4◦) When −∞ < k < 1+b
8 and c → c6 − 0, it follows that ∆(c) → 0 and

η(c)→ 0. Further we have

lim
c→c6−0

∆(c) csch2η(c)(x− ct) = lim
c→c6−0

∆(c)

sinh2 η(c)(x− ct)



THE EXPLICIT NONLINEAR WAVE SOLUTIONS OF THE GENERALIZED b-EQ. 1045

= lim
c→c6−0

∆(c)(√
∆(c)

2b(2+b) (x− ct) + o(
√

∆(c))
)2

=
2b(2 + b)

(x− c6t)2
. (101)

Thus it follows that lim
c→c6−0

u6(x, t, c) = u7(x, t).

(5◦) When 0 < k < 1+b
8 and c→ c5 + 0, it follows that ∆(c)→ 0 and η(c)→ 0.

Therefore we have

lim
c→c5+0

∆(c) csch2η(c)(x− ct) = lim
c→c5+0

∆(c)

sinh2(η(c)(x− ct))

= lim
c→c5+0

∆(c)(√
∆(c)

2b(2+b) (x− ct) + o(
√

∆(c))
)2

=
2b(2 + b)

(x− c5t)2
. (102)

Further it follows that lim
c→c5+0

u6(x, t, c) = u8(x, t). This completes the proof of

Theorem 4.

8. Conclusion. In this paper, we have investigated the explicit nonlinear wave
solutions of Eq.(1). Five types of explicit nonlinear wave solutions have been pre-
sented. These solutions are hyperbolic smooth solitary wave solution u1(x, t, c) (see
(45)), hyperbolic peakon wave solution u2(x, t, c) (see (56)), fractional peakon wave
solutions u3(x, t), u4(x, t) and u5(x, t) (see (66), (68) and (69)), hyperbolic blow-
up solution u6(x, t, c) (see (88)), fractional blow-up solutions u7(x, t), u8(x, t) and
u9(x, t), (see (89)–(91)). The relationships among these solutions also have been
revealed (see Theorem 4). Our results imply that for given b > 1, when k > 1+b

8 ,
Eq.(1) has no peakon wave. We have employed the software Mathematica to check
the correctness of these solutions. For example, the commands for u1(x, t, c) are as
follows:

∆ =
√

b (2 + b) ((1 + b) c− c2 − 2 (1 + b) k)

η =
√

∆
2 b (2+b)

ξ = x− c t

u1 = −b c+∆−3 ∆ Sech[η ξ]2

b (1+b)

u = u1

Simplify[D[u, t]+2 k D[u, x]−D[u, x, x, t]+(1+b) u2D[u, x]−
b D[u, x] D[u, x, x]−u D[u, x, x, x] ]

For checking other solutions, the commands are similar. That is, only need to
change u.

Comparing our work with that of predecessors, we have extended some results
obtained in [20]–[35].
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