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Abstract

Motivation: Catastrophic transitions are ubiquitous in the dynamic progression of complex biological systems; that
is, a critical transition at which complex systems suddenly shift from one stable state to another occurs. Identifying
such a critical point or tipping point is essential for revealing the underlying mechanism of complex biological sys-
tems. However, it is difficult to identify the tipping point since few significant differences in the critical state are
detected in terms of traditional static measurements.

Results: In this study, by exploring the dynamic changes in gene cooperative effects between the before-transition
and critical states, we presented a model-free approach, the directed-network rank score (DNRS), to detect the early-
warning signal of critical transition in complex biological systems. The proposed method is applicable to both bulk
and single-cell RNA-sequencing (scRNA-seq) data. This computational method was validated by the successful iden-
tification of the critical or pre-transition state for both simulated and six real datasets, including three scRNA-seq
datasets of embryonic development and three tumor datasets. In addition, the functional and pathway enrichment
analyses suggested that the corresponding DNRS signaling biomarkers were involved in key biological processes.

Availability and implementation: The source code is freely available at https://github.com/zhongjiayuan/DNRS.

Contact: scliurui@scut.edu.cn or chenpei@scut.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Many complex systems undergo a critical transition and then switch
abruptly to a contrasting state (Scheffer et al., 2009); that is, there
exists a so-called tipping point at which a drastic, irreversible and quali-
tative transition may occur. Detecting such tipping points for general
systems, such as socioecological (Pananos et al., 2017), financial (Billio
et al., 2016) and climate systems (Boers, 2018), has received extensive
attention. In biomedical fields, a similar critical state transition is also
observed in a variety of biological processes. For example, some chron-
ic diseases may experience a gradual process that takes several years or
even decades before catastrophic deterioration occurs. Cell fate com-
mitment is also regarded as a critical transition of embryonic develop-
ment, after which there is a drastic change in the cell populations
(Zhong et al., 2021). Identifying such a critical transition or tipping
point in biological systems plays an essential role in providing insights

into the underlying mechanism of disease progression or embryonic de-
velopment (Guo et al., 2021a; Shi et al., 2021). The time evolution of a
complex biological system is usually modeled as a time-dependent non-
linear dynamic system (Liu et al., 2020, 2021a), in which the abrupt
transition is viewed as the phase shift at a bifurcation point (Scheffer
et al., 2009). Therefore, from a dynamic system perspective, a biologic-
al process can be broadly divided into three states or stages (Fig. 1A):
(i) a before-transition state, a stable state with strong resilience; (ii) a
critical/pre-transition state, which is an unstable state just before the
onset of qualitative changes and with low resilience and sensitivity to
perturbation; and (iii) an after-transition state, another stable state
with strong resilience after the qualitative transition. For biological sys-
tems, hunting for such a pre-transition state may provide appropriate
timing for intervention to prevent or at least prepare for the upcoming
catastrophic consequences, such as disease onset or deterioration. The
recently proposed applications of a new concept, i.e. the dynamic
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network biomarker (DNB) (Chen et al., 2012), have been employed to
detect the critical transitions in biological systems. Specifically, when
the system approaches the tipping point/critical state, a dominant
group of strongly fluctuating variables (DNBs) appears and exhibits
strong cooperative effects on molecular associations, which could be
employed to quantitatively characterize the stability and criticality of a
system at the network level (Chen et al., 2022; Guo et al., 2018; Liu
et al., 2021b). In the past, many network-based ranking techniques,
such as random walk-based methods (Roy et al., 2014; Winter et al.,
2012), topological property-based approaches (George et al., 2006;
Krauthammer et al., 2004), the Markov random field model (Ma
et al., 2007) and the order statistical index (Aerts et al., 2006), have
been proposed for the identification of network-based disease bio-
markers by exploring the cooperative effects of gene combinations.
However, these studies mainly focused on the diagnosis of disease
(static biomarker) instead of disease prediction (dynamic biomarker).

Recently, network-based methods from the DNB framework have
been developed to address different biological topics, such as the identi-
fication of pre-disease states for complex diseases (Liu et al., 2022;
Peng et al., 2022), the personalized characterization of diseases (Liu
et al., 2017; Zhang et al., 2021) and the discovery of personalized
driver genes prioritization (Guo et al., 2021b). From the perspective of
gene associative and cooperative effects, we presented a model-free
computational method in this study, i.e. the directed-network rank
score (DNRS) method, to detect the critical states of complex biological
systems and identify key genes involved in related essential biological
processes. Specifically, based on the cells/samples from former time
point t ¼ T � 1, the time-specific directed network at a time point T is

constructed based on rewiring the protein–protein interaction (PPI) net-
work with direction determination index wT (Fig. 1B), and then the
local DNRS is calculated for each node/gene by using the proposed per-
sonalized PageRank (Fig. 1C). The DNRS can be utilized to quantify
the dynamic changes in gene cooperative effects of a time-specific
directed network. The drastic increase in such DNRS signals an up-
coming tipping point or pre-transition state of a biological system
(Fig. 1D). Furthermore, at the identified tipping point, a group of bio-
molecules that exhibit strong cooperative effects on molecular associa-
tions are identified as DNRS-signaling biomarkers for further
functional analysis. To demonstrate the effectiveness of DNRS in both
bulk and single-cell data, the proposed method was applied to a num-
ber of datasets, including a simulated dataset, three single-cell datasets
of embryonic development and three tumor datasets from The Cancer
Genome Atlas (TCGA). Specifically, cell fate commitment was success-
fully detected in three single-cell datasets of embryonic development,
including the differentiation of human embryonic stem cells to defini-
tive endoderm cells (hESC-to-DEC data), the development of epithelial
basal cells to the mouse hair follicle (EBC-to-MHF data) and the differ-
entiation of human embryonic stem cells to neurons (hESC-to-neuron
data). For three tumor datasets, we identified the pre-transition state
before lymph node metastasis (Stage II) for colon adenocarcinoma
(COAD), the pre-transition state before the tumor invaded the renal
vein (Stage II) for kidney renal clear cell carcinoma (KIRC) and the
pre-transition state before distant metastasis (Stage IIIB) for lung
adenocarcinoma (LUAD). The identified critical states all agreed with
the experimental observations, suggesting the robustness of the DNRS
method. In addition, the functional and pathway enrichment analyses
revealed that the corresponding DNRS signaling genes were implicated
in important biological processes.

2 Materials and methods

2.1 Theoretical background
The theoretical background of the DNRS approach is based on our
recently proposed DNB theory. Generally, from a system perspec-
tive, the progression of a complex biological system is described by
the dynamic evolution of a high-dimensional non-linear system,
where a drastic or qualitative shift in a biological process is regarded
as a phase transition at a bifurcation point (Shi et al., 2021). In
terms of the DNB theory (Chen et al., 2012; Liu et al., 2019), when
the system is in the vicinity of a critical point (bifurcation point), a
dominant group of biomolecules defined as the DNB appears, which
satisfies the following three properties (Chen et al., 2012):

• The variation in each DNB internal biomolecule rapidly

increases;
• The correlation between each pair of DNB internal biomolecules

drastically increases;
• The correlation between a DNB internal molecule and any exter-

nal biomolecule drastically decreases.

From the properties of DNB molecules, as the system is close to
the critical point, a group of highly correlated and widely fluctuating
variables emerges and exhibits strong cooperative effects on molecu-
lar associations, signaling the upcoming critical transition. By
exploring the dynamic changes of such a group of dominant varia-
bles in molecular associations at the network level, it is possible to
predict the qualitative state transition of a system. The proposed
DNRS method is designed to quantify the dynamic changes in gene
cooperative effects of a time-specific directed network, which cap-
tures the criticality of biological systems.

To describe and measure the significant changes in gene coopera-
tive effects at a network level, the PageRank method can be
employed to quantify the dynamic changes of molecular associa-
tions. Let G ¼ V; Eð Þ be a directed graph with K nodes. Denote
A ¼ ðaijÞ 2 R

K�K as the transition matrix of the graph G, and define
dout ið Þ as the out-degree of node i. For node i (corresponding to row
i), there are two settings corresponding to two different cases: (i)
when dout ið Þ > 0, aij ¼ 1=dout ið Þ if node i points to node j in graph

Fig. 1. Illustration of the proposed method for detecting the critical transition of

complex biological systems based on a modified personalized PageRank. (A) The

complex biological processes can be roughly divided into three stages/stages, i.e. a

before-transition state, a pre-transition state and an after-transition state. (B) Given

a group of control cells/samples from former time point t ¼ T� 1 and a set of case

cells/samples derived at time point T, the time-specific directed network of time

point T is constructed based on rewiring the protein–protein interaction (PPI) net-

work with direction determination index wT. (C) The local DNRS is calculated for

each node in the time-specific directed network of the time point T based on the per-

sonalized PageRank (Eq. 2) and then the DNRS (Eq. 8) is utilized to detect the

early-warning signal for the critical transition of a complex biological system. (D)

During the dynamic progression of a complex biological system, the DNRS remains

low when the system is in a before-transition state, while it increases significantly

when the system is close to the pre-transition state. Such an abrupt increase in the

DNRS indicates the tipping point (or the critical state) of a complex biological

system
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G, and 0 otherwise; (ii) when dout ið Þ ¼ 0; aij ¼ 1 if j ¼ i; and 0
otherwise. For such graph G, the PageRank vector s!� (the
PageRank score of nodes) is obtained by solving the fixed point of
the following iteration equation (Langville and Meyer, 2011):

s!ðlþ1Þ ¼ aA0 s!ðlÞ þ ð1� aÞ
K

; (1)

where a is a damping factor that is usually set as 0.85, and the sym-
bol ‘0’ represents the transpose of a matrix. Taking into account the
statistical properties of DNB theory, a personalized PageRank is
proposed and used in this study as follows:

s!ðlþ1Þ ¼ aH
0

T s!ðlÞ þ a d
!0

s!ðlÞ
� �

s!þ 1� að Þ s!; (2)

where the matrix HT (as described in Step 2 of the following DNRS
algorithm) represents the personalized transition matrix constructed
from a time-specific directed network of a time point T. The vector
d
!

(as presented in Step 3 of the DNRS algorithm) could be used for
balancing errors caused by isolated nodes that have no edge pointing
to other nodes. Vector s! (as described in Step 4 of the DNRS algo-
rithm) represents a personalized vector that satisfies

PK
i¼1 si ¼ 1.

The time-specific directed network at a time point T is con-
structed based on an information-theoretic scheme (Sun et al., 2019),
which provides a direction determination index w (as defined in
Eq. 3) to evaluate the combined effect of gene combinations over a
single gene from the perspective of mutual information (MI).
Specifically, vectors U

!
and V
!

are denoted as the expression profile of
gi and gj in all cells/samples from two adjacent time points T and
T � 1, respectively. Vector Y

!
is denoted as a binary phenotype label

indicating the sampling time point (T or T � 1) of each cell, i.e.
yk¼ T means that the kth cell/sample is obtained from the sampling
time T, while yk ¼ T � 1 marks the other case. Let vectors X̂

!
and X
!

be defined as X̂
!
¼ ðU!þ V

!Þ=
ffiffiffi
2
p

and X
! ¼ U

!
, respectively. Then,

whether there is a direction for edge (gi; gj) from gene gi to gj is
decided by the direction determination index wi; j defined as follows.

wi; j ¼
X

x̂2X̂
!
X

y2Y
!pðx̂; yÞlog

pðx̂; yÞ
pðx̂ÞpðyÞ

�
X

x2X
!
X

y2Y
!pðx; yÞlog

pðx; yÞ
pðxÞpðyÞ ; (3)

where pðx̂; yÞ is the joint probability density function (pdf) of X̂
!

and

Y
!

and p x; yð Þ is the pdf of X
!

and Y
!

. p x̂ð Þ; p xð Þ and pðyÞ represent

the marginal pdfs of X̂
!

, X
!

and Y
!

, respectively. The positive deter-
mination value infers that the integration of gene gj can be consid-

ered to be an improvement to the mutual information (MI) of gene
gi; that is, there is a directed edge (gi; gj) from gene gi to gj in the

time-specific directed network.
If the variables follow Gaussian distribution or binomial distri-

bution, Eq. (3) can be expressed as follows (see Supplementary
Information C for derivation).

wi; j ¼ �
1

2
log

1� PCCðX̂
!
; Y
!Þ2

1� PCCðX!; Y
!Þ2

; (4)

where PCCðX̂
!
; Y
!Þ represnts the Pearson correlation coefficient

(PCC) between the vector X̂
!

and Y
!

, and PCCðX!; Y
!Þ is the PCC be-

tween X
!

and Y
!

. From the properties of the DNB, when the system
is close to the vicinity of the critical point, there are much more
directed edges appearing for some nodes (i.e. the DNB members) in
the time-specific directed network.

2.2 Algorithm to identify the critical point based on

DNRS
As mentioned above, for a biological system with K genes/variables,
the state of the system at each time point can be revealed by the dy-
namical changes of cooperative effects on molecular associations.
The following algorithm is proposed to explore such dynamical

changes at a network level and identify the critical state or tipping
point.

[Step 1] Construct the time-specific directed network NðTÞ at
each time point t ¼ T (T � 2). Based on the protein–protein inter-
action (PPI) network and cells/samples from two adjacent time
points (e.g. N and L cells/samples at the time point
T and T � 1ð Þ; respectively), the time-specific directed network
NðTÞ can be constructed by a direction determination index wi; j

which is defined as Eq. (4). Specifically, if wi; j is greater than zero,
there is a directed edge (gi; gj) from gene gi to gj; otherwise, there
does not exist a directed edge (gi; gj). By this way, we construct a
time-specific directed network NðTÞ, where each directed edge (gi; gj)
from gene gi to gj is decided by direction determination index wi; j.

[Step 2] Construct the network’s transition matrix HT ¼
Hi; j

� �
K�K

based on the time-specific directed network NðTÞ, where
K represents the number of nodes/genes. The matrix element Hi; j

represents the direction determination value wi; j if there exists a
directed edge from the node i (gene gi) to j (gene gj), otherwise Hi; j

is set as 0. Then the standardization of matrix HT is as follows:

Hi; j ¼
wi; jPK
j¼1 wi; j

if
XK

j¼1
wi; j 6¼ 0 (5)

or

Hi; j ¼
0 ðj 6¼ iÞ
1 ðj ¼ iÞ if

XK

j¼1
wi; j ¼ 0

�
(6)

[Step 3] Build a K-dimensional vector d
!
; which can be used for

balancing errors caused by isolated nodes which have no edge point-
ing to other nodes. Its elements can be defined as the following
criteria.

di ¼
1
PK

j¼1 wi; j ¼ 0

0
PK

j¼1 wi; j 6¼ 0
i ¼ 1; 2; . . . ;K

(
(7)

[Step 4] Build a K-dimensional personalized vector s!; where the
element si represents the standard deviation of node i (gene gi) based
on the gene expressions of N cells at sampling time point T. The
normalized vector s! can be obtained by setting each of its element
as si ¼ si=

PK
i¼1 si.

[Step 5] Calculate the PageRank vector s!�T ¼ ðs�1; . . . ; s�KÞ (pre-
sented as Eq. 2) for the time-specific directed network NðTÞ, that is,
the local DNRS (gene-specific local DNRS) is calculated for each
gene of the time-specific directed network NðTÞ. Then the DNRS for
the whole network can be obtained from the following formula:

PR Tð Þ ¼ 1

Q

XQ

i¼1

s�i
mean s!�T

� �
 !

; (8)

where Q is the number of the top 5% genes with the largest local
DNRS and the symbol meanð s!�TÞ represents the mean of the
PageRank vector s!�T .

[Step 6] The critical point is identified by the one-sample t test
(Rochon and Kieser, 2011), which is employed to. To analyze how
well the DNRS recapitulates the abrupt transition, the one-sample t
test index Z is used to determine whether value x is significantly dif-
ferent from the mean of n-dimensional vector X ¼ ðx1; x2;...; xnÞ,
namely,

Z ¼ meanðXÞ � x

s=
ffiffiffi
n
p ; (9)

where meanðXÞ represents the mean of vector X and the s is the
standard deviation of vector X. The P-value related to index Z is
derived from the t-distribution to assess the statistical difference be-
tween meanðXÞ and x. There is a statistically significant difference
between meanðXÞ and x if P < 0:05. In this study, the time point
t ¼ T is viewed as a critical point if PRðtÞ satisfies two criteria:
(i) PRðtÞ> PRðt � 1Þ; (ii) PRðtÞ is statistically different (P < 0:05)
from the prior values (also see Supplementary Information D).
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Based on the DNB theory, the DNB biomolecules exhibit strong
fluctuations in a synchronized and collective manner when a bio-
logical system is close to the critical point (Chen et al., 2012). Thus,
when the system approaches the pre-transition state, some key bio-
molecules within the time-specific directed network NðTÞ yield sig-
nificant dynamic changes in molecular cooperative effects or gene
associations, which lead to a significant increase of PRðTÞ, thus
implying the imminent critical transition.

2.3 Data preprocessing and functional analysis
The DNRS method has been applied to six high-throughput
sequencing datasets, including EBC-to-MHF data (ID: GSE147372)
(Morita et al., 2021), hESC-to-DEC data (ID: GSE75748) (Chu
et al., 2016) and hESC-to-neuron data (ID: GSE86977) (Yao et al.,
2017) from the NCBI Gene Expression Omnibus (GEO) database
(http://www.ncbi.nlm.nih.gov/geo) and COAD, KIRC and LUAD
from TCGA database (http://cancergenome.nih.gov). For all
sequencing datasets, genes without the corresponding NCBI Entrez
gene symbol were discarded. For the gene mapped with multiple
probes, the mean value was taken as its expression. The tumor data-
sets included both tumor and adjacent non-tumor samples. Based on
the corresponding clinical information of TCGA, the tumor samples
were classified into several cancer stages. Other information of the
datasets is given in Supplementary Information B.

The functional annotations were obtained according to the
NCBI Gene database (http://www.ncbi.nlm.nih.gov/gene). The en-
richment analysis was performed based on DAVID (Huang et al.,
2009), Metascape (Zhou et al., 2019) and the ClusterProfiler pack-
age (Yu et al., 2012). All pathway information was obtained from
the Kyoto Encyclopedia of Genes and Genomes (KEGG) (https://
www.kegg.jp/).

3 Results

The definition and algorithm of the DNRS were presented in the
above section. To illustrate how DNRS works, we first applied it to
a simulated dataset, and then to six real-world datasets, i.e. single-
cell sequencing datasets including EBC-to-MHF data, hESC-to-DEC
data, hESC-to-neuron data and TCGA bulk datasets including
COAD, KIRC and LUAD. The detailed description of these datasets
is given in Supplementary Information B. For all datasets, the pro-
posed method successfully identified the pre-transition state or
detected the early-warning signals of critical transition into an irre-
versible after-transition state, which validated the effectiveness of
our method in quantifying the critical point just before the critical
transition into the after-transition state.

3.1 Validation based on numerical simulation
An 18-node regulatory network (Supplementary Fig. S1) is
employed to demonstrate the performance of the proposed method.
Such regulatory network represented in Michaelis-Menten form is
described by stochastic differential equations Eq. (S1) provided in
Supplementary Information A and is classically used to study gene
regulatory activities such as transcription, translation and non-linear
biological processes (Chen et al., 2009). In Supplementary Eq. (S1),
with parameter s varying from �0:5 to 0:15 and s ¼ 0 as the bifur-
cation point, a numerical simulation dataset was generated from the
network.

As shown in Figure 2A, the DNRS increases rapidly when the dy-
namic system is close to a special parametric value s ¼ 0 (the bifur-
cation point). Moreover, to assess the robustness of our approach, a
set of samples was generated with additive white noise. The evolu-
tion of the mean values of DNRS (the red curve in Fig. 2A) also sta-
bly provides the early-warning signal of the critical point, which
illustrates that the DNRS is robust against sample noise. In addition,
we have analyzed the stability and robustness of the proposed
method under different levels of data noise (Supplementary Fig. S2).
To exhibit the distinct dynamics of the system between the before-
transition and pre-transition state, we presented the landscape evo-
lution of local DNRS of different nodes (Fig. 2B). It is seen from

such a landscape that the local DNRS of the so-called DNB mem-
bers (see Supplementary Information A for details) exhibit a sharp
increase in the pre-transition state (s ¼ �0:001). In addition, the dy-
namic evolution of the regulatory network is shown in Figure 2C,
where an obvious change in the structure of the subnetwork com-
posed of DNB members appears near the bifurcation point s ¼ 0,
signaling the upcoming state transition at the network level. In other
words, when the system approaches the tipping point, DNB mem-
bers yield a distinct change in cooperative effects on molecular asso-
ciations, resulting in a dramatic increase in the corresponding local
DNRS. Such a critical phenomenon can be accurately detected by
the proposed approach, which demonstrates the effectiveness of
DNRS in detecting the early warning signal of critical transition.
The detailed description of the dynamic system is given in
Supplementary Information A.

3.2 Identifying critical transitions for both embryonic

development and cancers
To illustrate how the DNRS works on real datasets, the proposed
method was applied to three scRNA-seq datasets of embryonic de-
velopment (EBC-to-MHF data, hESC-to-DEC data and hESC-to-
neuron data) and three tumor datasets (COAD, KIRC and LUAD).
The DNRS was calculated for each time point based on Eq. (8) and
then taken to detect any possible critical state. For these datasets,
the sharp increase in DNRS successfully indicated an upcoming crit-
ical transition just before the irreversible after-transition state (the
red curve in Fig. 3A, C, E, G, I and K), which validated the effective-
ness of the proposed method. At each identified critical point, the
top 5% of genes with the largest local DNRS were selected as the
signaling genes, which could be regarded as a gene set containing
the dynamic network biomarker.

When applied to three scRNA-seq datasets, DNRS detects the
early warning signal of cell fate commitment during embryonic de-
velopment. For the EBC-to-MHF data, as shown in the red curve in
Figure 3A, the DNRS sharply increased at embryonic point 13.5
(E13.5) (P ¼ 9:173E� 183), after which it was observed that epi-
thelial basal cells were induced into hair follicle stem cells (HFSCs)
(Morita et al., 2021). As shown by the gray curve in Figure 3A, the
mean gene expression of the differentially expressed genes (DEGs)
showed dynamic changes at E15 (P ¼ 0.055), failed to provide an
early-warning signal for cell fate transition. In addition, the land-
scape of the local DNRS for signaling and non-signaling genes is
illustrated in Figure 3B, where a group of genes (signaling genes)

A
B

C

Fig. 2. Validation of the DNRS approach based on numerical simulation. (A) We

presented the evolution of the mean values of DNRS (defined in Eq. (8)) based on

50 simulated trials. It is clear that DNRS abruptly increases near the critical point

s ¼ 0. (B) The landscape evolution of local DNRS is presented for different nodes.

Notably, the local DNRS of DNB members exhibits a sharp increase when the sys-

tem is close to the bifurcation point (s ¼ 0). (C) From the dynamic evolution of the

regulatory network, it is seen that an obvious change in the structure of the subnet-

work composed of DNB members appears near the tipping point s ¼ 0
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exhibits a significant increase in local DNRS at E13.5. The hESC-to-
DEC data are presented by the red curve in Figure 3C, the drastic
transition (P ¼ 0:0066) of DNRS from 24 h to 36 h appears and
reaches its peak at 36 h, indicating a commitment to a definitive
endoderm fate occurred at 72 h (Chu et al., 2016). The dynamic
change (P ¼ 0:062) in the mean expression of DEGs appear at 72 h
(the gray curve in Fig. 3C). Moreover, it is seen from Figure 3D that
the peak of local DNRS for signaling genes appears at 36 h. When
applied to hESC-to-neuron data, there was an abrupt increase
(P ¼ 0:0027) in DNRS from Day 19 to Day 26 (the red curve in
Fig. 3E), signaling the upcoming differentiation of progenitor cells
into neuronal cells at Day 40 (Yao et al., 2017). The gray curve in
Figure 3E shows that the mean expression of DEGs exhibited a sig-
nificant difference (P ¼ 0:0025) at Day 40, failing to provide timely
early-warning signals for the cell fate transition. In addition,
Figure 3F shows that a significant increase in local DNRS of signal-
ing genes occurs on Day 26.

For three tumor datasets, the proposed method also identified
the critical point just before a catastrophic transition to the worsen-
ing of diseases. As shown by the red curve in Figure 3G, for COAD,
a significant change (P ¼ 0:018) in DNRS was detected around
Stage II, suggesting lymph node metastasis and tumor invasion of
other adjacent organs in Stage III (Hari et al., 2013). The gray curve
in Figure 3G shows that a significant increase (P ¼ 0:049) in mean
expression of DEGs occurs in Stage III and fails to detect the pre-
deterioration stage. Additionally, the landscape of local DNRS for
signaling and non-signaling genes is presented in Figure 3H, from
which it is seen that a significant increase in the local DNRS of sig-
naling genes occurs in Stage II. When applied to KIRC, it is seen
from Figure 3I that the peak of DNRS (P ¼ 1:592E� 04) appears in
Stage II, after which the lipid levels around the kidney increases rap-
idly, and then the tumor invades the renal vein (Su and Shahriyari,
2020). As presented in gray in Figure 3I, dynamic changes
(P ¼ 0:053) in the mean gene expression were detected in Stage III
and therefore failed to provide timely early-warning signals of the
cell fate transition. Furthermore, Figure 3J indicates that the local
DNRS of signaling genes from Stage I to Stage II abruptly increases
and reaches its peak in Stage II, revealing the imminent critical tran-
sition after Stage II. For LUAD, as illustrated in the red curve in
Figure 3K, the DNRS score in Stage IIIB significantly increased
(P ¼ 1:488E� 12), indicating an upcoming critical transition in

Stage IV; that is, Stage IV was characterized by a distant metastasis
process, in which the tumor cells invaded distant tissues or organs
(Chiang and Massagué, 2008). However, in terms of mean gene ex-
pression, there was little significant difference among the six time
points (the gray curve in Fig. 3K). In addition, Figure 3L demon-
strates that the signaling genes exhibit an abrupt increase in local
DNRS around Stage IIIB. The identified pre-deterioration stage are
actually closely related to prognosis based on Kaplan–Meier log-
rank analysis (see Supplementary Information E for details), that is,
the survival times based on samples from the before-transition and
after-transition stages are significantly different (P < 0:05) as
shown in Supplementary Figures S4 and S5.

3.3 Inferring the dynamical evolution of the regulatory

networks for signaling genes
At the identified tipping point, the top 5% of genes with the largest
local DNRS were selected as the signaling genes for further analyses
of function and biological process. These signaling genes can be
viewed as DNBs and may play key roles in triggering the critical
transitions of biological systems. The signaling genes were mapped
to the PPI network, where the maximal connected subgraph was
extracted to study the dynamic evolution of the regulatory network
of signaling genes. For hESC-to-neuron data, an obvious change
occurs in the network structure on Day 26 (Fig. 4A), indicating the
cell fate transition of progenitor cells into neuronal cells on Day 40
(Yao et al., 2017). The dynamic evolution of the regulatory network
across all 5 time points is given in Supplementary Figure S6A. The
dynamic evolution of the regulatory network for hESC-to-DEC data
can be seen in Supplementary Figure S6B. When applied to the
TCGA-COAD dataset, there was a notable change in the network
structure at Stage II (Fig. 4B), implying the imminent critical transi-
tion, that is, there was lymph node metastasis and tumor invasion of
adjacent organs after Stage II (Hari et al., 2013). In addition, as
shown in Figure 4C–E, for three datasets of embryonic development,
the expressions of signaling genes effectively distinguish the state of
cells before and after critical transition by using t-distributed sto-
chastic neighbor embedding (t-SNE) (Van der Maaten and Hinton,
2008).

3.4 The regulation mechanisms underlying embryonic

development
For two scRNA-seq datasets (hESC-to-DEC and hESC-to-neuron
data) from human embryonic development, 24 common signaling
genes (CSGs) were shared between these two datasets
(Supplementary Fig. S7A). To explore the regulatory mechanisms
underlying embryonic development at the network level, we analyze
the PPI subnetwork of CSGs, which is composed of the CSGs and
their first-order DEG neighbors from the PPI network. The first-
order DEG neighbors are genes satisfying: (i) they are the first-order
neighbors of CSGs in the PPI network; and (ii) they are differentially
expressed; that is, there are significant differences (P < 0:05) be-
tween gene expressions before and after the identified critical point.
As shown in Figure 5A, this subnetwork contains 24 CSGs and 210
first-order DEG neighbors in the hESC-to-neuron process. It is clear
that there is a major shift in gene expression for the network after
the critical point, that is, gene expression undergoes a significant
change either from low to high, or vice versa. Moreover, KEGG
pathway enrichment analysis was carried out to investigate the po-
tential mechanisms underlying the functional associations between
DNRS-signaling genes and the first-order DEG neighbors of CSGs
(Fig. 5B–E). It is seen from Figure 5B–D that the main enriched path-
ways are closely related to embryonic development. For example,
the PI3K/Akt pathway is an intracellular signaling pathway during
embryonic development that often induces positive impacts on cell
proliferation, differentiation and growth (Hao et al., 2019). The cell
cycle pathway plays an important role in the regulation of cell pro-
liferation and differentiation (Hydbring et al., 2016). The MAPK
signaling pathway regulates multiple cellular processes, including
cell proliferation, differentiation and development (Takahara et al.,
2019).

Fig. 3. The application of the DNRS method in both embryonic development and

tumor diseases. The performance of dynamic changes between DNRS and the mean

gene expression for six biological datasets: (A) EBC-to-MHF data, (C) hESC-to-

DEC data, (E) hESC-to-neuron data, (G) COAD, (I) KIRC and (K) LUAD. The

landscape of local DNRS illustrates the dynamic evolution of signaling and non-sig-

naling genes for these six real-world datasets: (B) EBC-to-MHF data, (D) hESC-to-

DEC data, (F) hESC-to-neuron data, (H) COAD, (J) KIRC and (L) LUAD
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In the PI3K/AKT pathway, the core effector AKT induces a large
number of downstream biological effects, such as cell survival, mi-
gration and proliferation; therefore, AKT activity is usually tightly
regulated (Manning and Cantley, 2007). As shown in Figure 5E, the
underlying signaling mechanism of the PI3K/AKT pathway was
revealed by the functional analysis of CSGs and their first-order
DEG neighbors. The first-order DEG neighbors, such as ANGPT2
and FGFR3, are upstream growth factor signaling genes, the expres-
sion of which rises sharply after crossing the critical point, and this
dramatic change in gene expression suggests that the critical point
detected by the DNRS is possibly the important period for initiation
of these signals. The delayed change in the expression of the import-
ant coordinating gene PIK3R1 (an identified CSG) suggests that it
receives signals from upstream growth factors and functions to pro-
mote cell cycle progression during a specific critical period, which
also indicates the precision of the intracellular transcriptional regu-
latory network during embryonic development. In addition, the
first-order DEG neighbor PTK2 usually acts as an early cascade fac-
tor to promote PI3K/AKT signaling and expansion. In addition, two
CSGs, HSP90AA1 and YWHAZ, are coregulators that promote cell
cycle maintenance by repressing the expression of FOXO transcrip-
tion factors (Gan et al., 2009). These genes showed significant
changes in expressions after the critical point and uniformly exhib-
ited a facilitative effect on cell cycle progression. Overall, the syn-
ergy of CSGs and their first-order DEG neighbors may reveal the
underlying signaling mechanisms involved in cell cycle progression.

3.5 Functional analysis of the CSGs among three

cancers
As shown in Figure 6A, the KEGG enrichment analysis illustrated
that signaling genes (top 5% genes with the highest local DNRS) in
these cancer datasets were mainly enriched in cancer-related path-
ways, such as PI3K-Akt signaling pathway, Proteoglycans in cancer,
FoxO signaling pathway, MAPK signaling pathway, and Wnt sig-
naling pathway. Moreover, there were not only many intersections
across the signaling genes in different cancers, but there existed close
functional relationships among them (Supplementary Fig. S7B). To
further reveal the genes that might stimulate tumor progression
across the different types of cancer, the functional enrichment ana-
lysis was performed for 90 CSGs among these three cancers
(Supplementary Fig. S7C). Figure 6B shows that these CSGs were
enriched in the PI3K-Akt signaling pathway, proteoglycans in cancer
and other cancer-related pathways (Supplementary Fig. S7D).
Besides, some CSGs have been reported to be closely associated with
tumor progression and metastasis (Supplementary Table S1), sug-
gesting that these genes may play important roles in the correspond-
ing biological processes. Moreover, for the TCGA-COAD dataset,
we also found that the expression patterns of the common genes
involved in different cancer-related pathways switched before and
after critical points (Fig. 6C). In colorectal cancer progression, the
critical point appears in clinical Stage II, a stage that usually distin-
guishes the occurrence of lymph node metastasis of colorectal cancer
(Lan et al., 2012). Figure 6D uncovers the CSGs enriched in the
PI3K/Akt pathway that show different regulatory patterns before
and after lymph node metastasis and play important roles in the pro-
gression of cancer. Specifically, the genes MYC and TP53, which are
closely associated with cell survival, show increased expression be-
fore the critical period, and these genes are thought to be directly
related to apoptotic function (Kennedy et al., 1997; Yoon et al.,
2015), suggesting that antagonism of cancer cells to apoptosis is
completed before the critical state and, more specifically, before tis-
sue infiltration or lymph node metastasis. Furthermore, the expres-
sion products of VEGFA and EGFR are often regarded to promote
tumor tissue angiogenesis and thus tumor infiltration and metastasis
via the PI3K-AKT pathway (Chen et al., 2014). In Stage III after the
critical point, the expression of VEGFA and EGFR genes increased
substantially, which was largely consistent with the subsequent clin-
ical manifestations, and the presence of a large number of
angiogenesis-promoting factors drove the distal metastatic foci of
colorectal cancer itineraries. In general, the above results suggest

A

B

C D E

Fig. 4. The dynamic evolution of the regulatory networks for signaling genes. The

signaling genes were mapped to the PPI network, where the maximal connected sub-

graph was extracted to study the dynamic evolution of the regulatory network for

signaling genes. Each node represents a gene with the local DNRS, and each edge

represents the regulation with the direction determination value w. (A) The dynamic

evolution of signaling gene networks for hESC-to-neuron data. (B) The dynamic

evolution of signaling gene networks for the TCGA-COAD dataset. Based on the

expression levels of signaling genes (the top 5% of genes with the highest local

DNRS at the tipping point), t-SNE was employed to cluster cells for (C) hESC-to-

neuron data, (D) hESC-to-DEC data and (E) EBC-to-MHF data

Fig. 5. The potential mechanisms underlying the functional associations during em-

bryonic development. (A) Dynamic evolution of the PPI subnetwork of common sig-

naling genes (CSGs) consists of 24 CSGs and their 210 first-order DEG neighbors

for the hESC-to-neuron process. (B) The pathway enrichment analysis for the

DNRS signaling genes from the hESC-to-neuron data. (C) The pathway enrichment

analysis for the first-order DEG neighbors of CSGs. (D) The key common pathways

are shared between DNRS-signaling genes and the first-order DEG neighbors of

CSGs. (E) The underlying molecular mechanism is revealed by the functional ana-

lysis of CSGs and their first-order DEG neighbors
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that in cancer progression, maintaining cell survival is as a priority
for cancer cells before further malignant features such as cell prolif-
eration and tissue infiltration. The presence of stage inconsistencies
in the emergence of cancer-associated abnormal cellular functions
may be the key to stage-specific precision therapy.

4 Discussion

It is important to hunt for the critical state of complex biological
systems, such as the pre-deterioration stage of tumor disease and cell
fate commitment during embryonic development. Detecting early
warning signals for critical transition just before disease deterior-
ation may provide appropriate timing to prevent or at least prepare
for catastrophic deterioration. Understanding the cell fate decision
may enable the construction of individual-specific disease models
and the design of specific therapies for complex diseases relevant to
cell differentiation (Peltier and Schaffer, 2010). However, it is usual-
ly challenging to identify the critical transition of complex biological
systems since there is little change in the system state before reaching
the tipping point. In addition, real biological datasets are sometimes
too noisy to characterize the dynamics of biological processes.

In this study, different from traditional methods based on the in-
formation of differential expressions, we developed a computational
method to explore the dynamic changes in cooperative effects on
molecular associations, thus signaling an upcoming critical transi-
tion when the complex biological system is close to the tipping
point. The proposed DNRS has been successfully applied to both a
numerical dataset (Fig. 2) and six real biological datasets (Fig. 3).
Specifically, the abrupt increase in the DNRS demonstrates the tip-
ping point (E13.5) of the EBC-to-MHF process before differenti-
ation into the mouse hair follicle, the tipping point (36 h) of the
hESC-to-DEC process before differentiation into the definitive endo-
derm, the tipping point (Day 26) of the hESC-to-neuron process be-
fore differentiation into neuronal cells, the critical state (Stage II) of
COAD before lymph node metastasis, the critical state (Stage II) of

KIRC before the tumor invades the renal vein, and the critical state
(Stage IIIB) of LUAD before distant metastasis. In addition, func-
tional enrichment analysis revealed that the common DNRS signal-
ing genes for three cancer datasets and two human embryonic
differentiation datasets are involved in significant biological proc-
esses or pathways (Figs 5 and 6). However, DNRS may not perform
well if there are too few samples at a specific time point. In addition,
the time-specific directed network is constructed based on a priori
knowledge-based PPI network.

To summarize, there are the following advantages of the pro-
posed method. First, compared with the classical DNB, the DNRS is
more sensitive to critical signals (see Supplementary Information H
for details). Second, compared to the traditional biomarkers that are
used for the detection of the after-transition state based on the infor-
mation of differential expressions, the DNRS method can detect
early-warning signals for the pre-transition state just before the cata-
strophic transition by exploring the dynamic changes of in coopera-
tive effects on molecular associations. Third, it is noteworthy that
the DNRS is model-free and different from conventional machine
learning models; that is, it requires neither feature selection nor par-
ameter training. Together with the dynamic prediction method
(Chen et al., 2020), the DNRS may not only detect the criticality of
a system, but reveal the dynamic change in molecular associations
that may drive the system into an irreversible state transition.
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