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Using the bifurcation method of dynamical systems, we study nonlinear waves in the generalized
mKdV equation u; + a(1 + bu?)uuy + Uz = 0.

(i) We obtain four types of new expressions. The first type is composed of four common
expressions of the symmetric solitary waves, the kink waves and the blow-up waves. The
second type includes four common expressions of the anti-symmetric solitary waves, the
kink waves and the blow-up waves. The third type is made of two trigonometric expressions
of periodic-blow-up waves. The fourth type is composed of two fractional expressions of
1-blow-up waves.

(ii) We point out that there are two sets of kink waves which are called tall-kink waves and
low-kink waves, respectively.

(iii) We reveal two kinds of new bifurcation phenomena. The first phenomenon is that the
low-kink waves can be bifurcated from four types of nonlinear waves, the symmetric
solitary waves, blow-up waves, tall-kink waves and anti-symmetric solitary waves.
The second phenomenon is that the 1-blow-up waves can be bifurcated from the
periodic-blow-up waves.

We also show that the common expressions include many results given by pioneers.
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1. Introduction

Many authors have been interested in the general-
ized mKdV equation

U + CL(l + b’LL2)’LL2’LLz + Ugze =0, (1)

where a and b are real parameters and ab # 0.
For example, Dey [1986, 1988] studied the exact
Hamiltonian density and the conservation laws, and
obtained four kink wave solutions

uf = j:\/gy/lnLtanh(\/Eg), (2)
uffz:l:\/%\/ltanh(\/gg), (3)

wherea>0,c>0,b:—%;c and
E=a—ct. (4)
For a > 0, ¢ > 0, =22 < b < 0, Liu and Li

[2002] gave two kink wave solutions

t_ (5a + A)(5a — 2A)
¢ 7\ 6ab[3A + (2A — 5a) sinh?(n,€)]

u

x sinh(m§) (5)
where
A = +/ba(5a + 36bc) (6)
and
_ A(A + 5a)
T A (7)

For ¢ > 0, ab > 0 or —f—&<b<0, Tang et al.
[2002] obtained two solitary wave solutions

60c

+

=+ 8
Hd \/5a—i—Qcosh(2\/E§)7 ®)
where

Q = +/ba(ba + 48bc). 9)

Zhang et al. [2002] gave two solitary wave
solutions

V60csech (1/c€) ‘
/(50 — Q) sech?(y/2€) + 20

It is easy to verify that uT = uF. Li et al. [2003)]
obtained some complex solutions and some solitary
wave solutions which are similar to the solutions
above.

uei::I:

(10)

When b = 0, Eq. (1) becomes the mKdV
equation

U + au’uy + Ugyy = 0, (11)

which has been studied by a number of authors,
for instance, Fu et al. [2004a, 2004b], Gardner et al.
[1995], Grimshaw et al. [2002], Gorsky and Himonas
[2005], Kevrekidis et al. [2004], Kudryashov and
Sinrlshchiov [2011], Lakshmanan and Tamizhmani
[1985], Li et al. [2003], Liu and Yang [2002], Miura
et al. [1968], Miura [1976], Smyth and Worthy
[1995].

Recently, the bifurcation method of dynami-
cal systems has been employed to study nonlinear
waves successively (e.g. [Li & Chen, 2005a, 2005b;
Li et al., 2009a, 2009b; Li & Chen, 2010; Liu, 2010a,
2010b; Liu & Liang, 2011]). In this paper, we inves-
tigate nonlinear waves in Eq. (1) by using the bifur-
cation method mentioned above. We obtain four
types of new expressions and reveal two kinds of
new bifurcation phenomena which are introduced
in the abstract above.

This paper is organized as follows. In Sec. 2, we
state our results. In Sec. 3, we give derivations for
our results and a brief conclusion is given in Sec. 4.

2. Main Results

For a given constant number ¢ > 0, on a—b plane,
let I1 and I5 represent the following two lines

ba
li: b= —— 12
! 48¢’ (12)
5a
: = ——. 1
i b="55 (13)

Let A; (i = 1,2,...,6) represent the regions
surrounded by lines /1, o and the coordinate axes
(see Fig. 1).

bA
As Ai
o \\\ Ao ¢
\ >
As \ ~
\ b=—_se
Ag N "
bl 5a \l
=X 36¢ As 1
\
lo

Fig. 1. The locations of the regions A4; (i =1,2,...,6) and
lines I, l2 for given constant number ¢ > 0.
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Also, let & = z—ct be the intermediate variable,
A # 0, u # 0 be two arbitrary real numbers. Then
our main results are listed in Propositions 1-3.

2.1. The common explicit
expressions of the symmetric
solitary waves, kink waves and
blow-up waves

Proposition 1. (i) Forab # 0, Eq. (1) has four real

nonlinear wave solutions

\
ot \/ 3600c 14

300a) + 02e2Veé + 900N\2e—2Vee’

and

3600cA

+
ug =+ (15
& \/SOOa/\ 4 O2e—2veé £ 900\2e2Vcé (15)

where Q is given in (9). Corresponding to A > 0
or A < 0, these solutions have the following wave
shapes and properties.

(1) For the case of X > 0, there are four properties
as follows:

= &
e o) e

(D)a If A > 0 and (a,b) € 1y, that is a > 0 and
b= —f—gc, then uf and ugi become
12¢
+
Uzn = _ 16
fo a+ 3\e—2vel (16)
and
12¢
+ _
a0 = a4+ 3\e2ve’ (17)

which represent four low-kink waves [refer to
Fig. 2(d)]. Specially, if a >0, b= —fSC‘C and X = g,
then ui and u;,;t become uF and uf (see (2), (3)).

(Dp If (a,b) belongs to any one of the regions Ay,
Ay, As and N # %, then ufi #+ uét and they
represent four symmetric solitary waves [refer to
Figs. 2(a)-2(c)]. Specially, when (a,b) € Ay and
b — ff—é‘; + 0, the four symmetric solitary waves
become four low-kink waves with the expressions ufj([)

and ugio. For the varying process, see Fig. 2.

(1)¢ If (a,b) belongs to one of the regions As, la, Ay,
Ag and \ # %, then u?c #* ugi and they represent
four 1-blow-up waves. Specially, when a > 0 and

(a)
Uy u e ¢ up
S
i i 3 3
L ur Ug (I

(c)

(d)

Fig. 2. (Four low-kink waves are bifurcated from four symmetric solitary waves.) The varying process for ufi and ug_,;t when
A>0,\# 3{2—07 (a,b) € Ay and b — —%—1—07 where a = 12, ¢ = 2, A = 4, llzbz—% = —%, and (a) bz—%—i—lO_Q7
(b)b=—-2+10"",(c)b=-3+10 % and (d) b= -5 + 10 '2
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Fig. 3. (Four low-kink waves are bifurcated from four 1-blow-up waves.) The varying process for ufﬁ and ug: when A > 0,
a >0, \# %, (a,b) € As andb%f%fo,whereazlzc:l)\:él, llzb:f%:f%,and (au)b:f%fl(rQ7

(b)b=—-3-10"° (c)b=—3 —10"% and (d) b= -3 — 102

sa
48¢c i 1
low-kink waves with the expressions uy, and Uy For

the varying process, see Fig. 3.

b— — 0, the four 1-blow-up waves become four

(D)a If (a,b) belongs to one of Ay, Az, As and
A= 3%, then ufi = ug.[ and equal to the hyper-
bolic solitary wave solutions uy (see (8)). When
(a,b) € Ay and b — —%;C +0, u(jf tend to the trivial

12c +

solutions w = +4/=¢. The varying process for ug

s showed in Fig. 4.

(2) For the case of A < 0, there are four properties
as follows:

(2)a If (a,b) € Ay or (a,b) € 1y, then uf and ug
are real solutions. For other cases, ufi and ug.[ are
complex solutions.

(2, If (a,b) € U1, that is, a > 0, and b = —f—gc,
then uf and ugi become u?g and ug% which represent
four 1-blow-up waves [refer to Fig. 5(d)]. Specially,
ifa>0,b= _4% and A = —3, ufc and ugi respec-
tively become the hyperbolic blow-up wave solutions

ug ::I:\/gwl—i—coth(\/éﬁ), (18)

and

Uy = i\/§\/1 — coth(v/c ). (19)

(2)¢ If (a,b) € Ay and X\ # —%, then uy # ug
and they represent four 2-blow-up waves. When

5a + + ; +
15. 10, up and ug respectively become ugy, and

ugio. The varying process for ufi and ugi is showed
in Fig. 5.

(2)q If (a,b) € Ag and X = f%, then ufi = uét and

equal to the hyperbolic blow-up wave solutions

b— —

+ 60c
g = i\/Ba — Qcosh(2y/c&) (20)

When b — ff—g'i: + 0, ufﬂg tends to the trivial

- /12 - +
solution u = x4/ =¢. The varying process for ug , U
displayed in Fig. 6.

2.2. The common explicit
expressions of kink waves,
anti-symmetric solitary waves
and blow-up waves

From the expression of A in (6), we get the following
lemma.
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Fig. 4. (Two symmetric solitary waves become two trivial waves.) The varying process for the figures of ufjt (that is, u?: and
ug_,;t with A = %) when (a,b) € Ag and b — —% + 0, where a = 12, ¢ = 2, l1: b = —% = —%, and (a) b = —g +1072,
(b)b=—-2+10"",(c)b=—3+10 % and (d) b= -5 + 10 '2

u u
uy Ug uy Ug
O 0]
4 13
Uy ﬂ Uy Uy Uy
(a) (b)
u u

-
S

-
.

N
()

(¢) (d)

Fig. 5. (Four 2-blow-up waves become four 1-blow-up waves.) The varying process for u?: and uéﬁ when A < 0, (a,b) € Ag and
b— —%-&-0, wherea =12, ¢ =2, A\ = —4,11: b= —% = _%7 and (a) b= _%_;'_10727 (b) b= _%_,'_10757 (C) b= _%_,'_1078
and (d) b= —2 +10'2.
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Fig. 6. (Two 2-blow-up waves become two trivial waves.) The varying process for u

u
L_Jugg
0)
£
(‘\\ut‘g
(b)
u +
Ufy
0
3
Ugg
(d)
13; when \ = —%, (a,b) € Az and

b— —2% 4 (. where a = 12, ¢ = 2, llzbz—%z—%, and (a)bz—%—&—lO_Q, (b)bz—%+10_5, c)b:—%—i—lO_8

and (d) b= —2 +10'2.

Lemma 1. If
S5a — 2A
= — 21
Ko 6ab ) ( )
then it follows that
>0 for (a,b) € As,
o =0 for (a,b) € 1y, (22)

<0 for (a,b) € As.

Proposition 2. (i) If (a,b) belongs to one of the
regions Ag, As, l1 and ly, then Eq. (1) has four real
nonlinear wave solutions

e a(6abp + 6 %)
h \/36a2b2u2 — 12abpuw "2 4 §2 e2n2§ ’
(23)
and
ot a(6aby 4 § e ™)
' /36420212 — 12abuw e—2€ + 52 o—2m2€’
(24)

where A is given in (6), and

[ A+ba
TNV 6w (25)

§ = 2A — 5a, (26)
w = 4A + ba, (27)
—A(ba + A)
=\ —-. 2
' 45ab (28)

Specially, if (a,b) € 1y, that is, b = _4%’ then

uf and uljE respectively become
12pc
ufy = Fy| 29
ho + 48C€2\/E£ + ap ( )
and

12pc

U = . 30

0 :F\/480e_2\/55 +au (30)

(ii) For other cases, uf and uljE are complex solu-
tions of Eq. (1).

Corresponding to p > 0 or p < 0, these solu-

tions have the following wave shapes and properties.

(1°) For the case of i > 0, there are five properties
as follows:

(1°)a If (a,b) € ly, then uf, and ug, represent four

low-kink waves. u}'fo and ui'g have asymptotic lines
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(d)

Fig. 7. (Four low-kink waves are bifurcated from four tall-kink waves.) The varying process for the figures of uf and uilL

when u > 0, u # |pol, (a,b) € Ag andbﬂf%+0, where a =12, c =2, p =4, l1: b:f%:f%and (a)b:fg+1072,

(b)b=—3+107%, (c) b=—3+10"% and (d) b= —3 + 10 '2.

— _ 12¢ - — .
u=0 and u =/ =¢. uy, and uy, have asymptotic

lines u = 0 and u = —/ 22 [refer to Fig. 7(d) or
Fig. 8(d)].

Specially, if a >0, b= —f—gc and p = %, then
uf = uf and v = uf. For uf and uf, see (2)
and (3).

(1°)y, If (a,b) € Ag and pi # o), then ui # ui® and
they represent four tall-kink waves [see Figs. 7(a)—

Nc)]. When b — f%;c + 0, the four tall-kink waves
q:

become four low-kink waves with the expressions uy,
and ugj) [see Fig. 7(d)]. The varying process is dis-
played in Fig. 7.

(1°)e If (a,b) € Az and p # |pol, then uf #

uli and they represent four anti-symmetric solitary

waves with nonzero asymptotic lines v = +a [see

Figs. 8(a)-8(c)].

(i) Whenb — —2% — 0, the four anti-symmetric
solitary waves become four low-kink waves with
the expressions ufo and uijé. The varying pro-
cess is displayed in Fig. 8.

(i) When b — —2& + 0, the four anti-symmetric

solitary waves become trivial waves u = + %.

(1°)a If (a,b) € Az and p = |po|, then

5oand oy =ut =ug (31

c i

uﬁr =u =u
which represent two tall-kink waves and tend to triv-

ial waves u =0 (see Fig. 9) when b — —%;C + 0.

(1°)e If (a,b) € Az and p = |uo), then ui = u =
quF of form

. \/ 2(5a — 2A)
Ui =+ = y
(5a + 4A) + (5a — 2A) cosh(na€)

X ozcosh(nz—g) (32)

which represent two anti-symmetric solitary waves
and tend to the trivial wave uw = 0 (see Fig. 10)

when b — f%;c — 0 and tend to v = Lo when
b%*%nLO.

(2°) For the case of p < 0, there are four properties
as follows:

(2°)a If p < 0 and (a,b) € l; then ufo and w5 rep-
resent four 1-blow-up waves [refer to Fig. 11(d)].
Specially, if = —%, then uﬁo and uijé become the

hyperbolic blow-up wave solutions uﬁ and ug.tl (see

(18), (19)).
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N
Up

() (d)

Fig. 8. (Four low-kink waves are bifurcated from four anti-symmetric solitary waves.) The varying process for the figures of

uf and uilL when p > 0, u # |pol, (a,b) € A3 and b — —% -0, where a =12, c =2, p =4, 11: b = — 5= = —%, and

(a)b=-3-10"% (b)) b=-3-10"°(c) b=—-3 —10"% and (d) b= —5 — 107 2.

u u
U ue Uc us
(@) [0)
3 13
(a) (b)
u u
Us ug
0 O] ui=uc=0
3 3

() (d)

Fig. 9. (Two tall-kink waves become a trivial wave.) The varying process for the figures of u(jf when (a,b) € Ay and
b — —% +0, where a =12, c=2,l1: b= —4‘%: = —%, and (a) b= —% +1072, (b) b= —g +1075, (¢) b= —% +107% and
(d)b=-3+10""%
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U
uj
O
13
uj
(b)
U
o) ul=uj=10
£

(d)

Fig. 10. (Two anti-symmetric solitary waves become a trivial wave.) The varying process for the figures of uji when (a,b) € A3
and b — —4‘%:—0, wherea =12,c =2, u=4,11: b= —4%: = —27 and (a) b = —2—10_27 (b)b= —%—10_57 (c)b= —%—10_8
and (d) b= —2 —10'2.

T‘\Lg

|Uﬁ u?' E
[0
3 3
I lui U?I Uh (; "UJE
(a) (b)
u
L Je
@)
3 3
Eh uh| ui
(

d)

Fig. 11. (Two pairs of 1-blow-up waves are bifurcated from four pairs of 1-blow-up waves.) The varying process for the figures
of ui: and uii when p < 0, u # —|po| and b — —%;27 where a =12, c =2, 11: b= —4%: = —% and (a) b= —g +1072, (b)

b=-2+10° (c)b=-3+10"%and (d) b=—3 £ 1072
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U . U .
ul u |UT l wil o uj uf o |un
o) 0
§ §
R
sl M uil o oug un oy
(a) (b)
L u JUh . uj = Up
0 o)
3 3
r ui = u;
U3 uy,

(c) (d)
+

Fig. 12. (Four pairs of 1-blow-up waves become two trivial waves.) The varying process for u;- and uii when 1 < 0, p # —|pol
andbﬂfm+0 where a =12, ¢ =2, l1: b= — 36< %, and (a) b:f%er*?7 (b) b:fg +107°, (c) b:fg +1078
and (d) b= —3 +107'2.

! bu;d duzd ! ) U

—

O
Uy Uy Uil

(c) (d)
Fig. 13. (The 1-blow-up waves are bifurcated from the periodic-blow-up waves.) The varying process for the figures of uf{t
Whel’lbﬂf < +0, wherea =12, c =2, l1: b= — 36< %,and(a)b:ngrlO*?, (b)b:ngrlO*‘r’, (c)b:f%+1078
and (d) b= —3 +107'2.
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(2°)p If (a,b) belongs to one of Az, As and p < 0,
W # —|uol, then uf # u and they represent four
pairs of 1-blow-up waves. When b — 7480, the four
pairs of 1-blow-up waves become two pairs of 1-blow-
up waves with the expressions uﬁo and uijg. For the
varying process, see Fig. 11. When b — f% + 0,
the four pairs of 1-blow-up waves become the trivial
waves u = ta (see Fig. 12).

(2°)c If (a,b) € Ay and p = —|puol, then uj = ui" =
uJi (see (32)) which represent two pairs of 1-blow-up
waves.

(2°)a If (a,b) € Ag and p = —|pol, then uf =u; =
U, and u, = ut = ul which represent two pairs of
1-blow-up waves.

2.3. The periodic blow-up waves
and fractional blow-up waves

Proposition 3

(i) If (a,b) belongs to one of As, As and ly, then
Eq. (1) has two periodic blow-up wave solu-

tions
it (A —5a)(2A + 5a)[1 — cos(n3€)]
k 6abba — 4A — (5a + 2A) cos(n3€)]’
(33)

where A is given in (6) and

 JA(=ba+ A)
= 45ab
(ii) If (a,b) € ly, that is, b = —2% . then Eq. (1)

has two fractional 1-blow-up wave solutions

uli — iﬂ_
a(=3 + c€?)

(iti) If (a,b) € la, then uf are not defined. If (a,b)
belongs to one of A1, Ay, As and Ag, then uf
are complex solutions of Eq. (1 )

(iv) When a >0 and b — —2% 40, uit tend to ui.
The varying process is displayed in Fig. 13.

(34)

(35)

3. The Derivations of Main Results

To derive our results, substituting u = ¢(§) with
¢ =x — ct into Eq. (1), it follows that

— e/ (&) + a(1 + bp®(€)p* ()¢ (§) + ¢ (£) = 0.
(36)

Integrating (12) once, we get the following
equation
ab s

@"(6) ~ ep(&) + 36°O) + T = 0. (37)

From (13) we obtain planar system
dp dy a 3 ab g
a Ys ac = cp—3¥ 590
with the first integral
H(p,y) = h, (39)

(38)

where h is the integral constant and
ab
H =y — — 40
(py) =v° cso+690+15s0 (40)
Let a be in (25) and

A —ba
6ab

where A is given in (6). According to the qualitative
theory, we obtain the bifurcation phase portraits of
the planar system (38) as in Fig. 14.

Next, using the information given by Fig. 14,
we give derivations to Proposition 1-3 respectively.

f= (41)

3.1. The derivations to
Proposition 1

In the first integral (39), letting h = H(0,0), it fol-
lows that

ab
— 4 ]2 e =22 - = 42
Y \/so (C 6s0 15@) (42)

Substituting (42) into the first equation of (38)
and integrating it, we have

ds

/so
P of . @2 _aby
\/s <c 55 153)

where p is an arbitrary constant number.
Completing the integral above and solving the
equation for ¢, it follows that

=& (43)

L 720c\ e2V'€
77 7\ 60are2VE 1 a(5a + 48be)edVeE + 18002
(44)

where A = A(p) is an arbitrary real number.
Note that if u = ¢(z — ct) is a solution of
Eq. (1), then so is u = ¢(ct — x). Therefore,
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Fig. 14. The bifurcation phase portraits of the system (38) for given wave speed ¢ > 0.

from (44) we obtain the solutions ui* and uf as (14)

and

and (17). Furthermore, in (14) and (15) letting

b:

and

(15).

In (14) and (15) letting b = — 2% we get (16)

18¢>

—f—gc and A = g, it follows that

12¢
a(l + e~ 2V)

n 12ceVes
a(eVe + e~ V)

+ _
uf—:I:

6c e\/Ef — e_\/zf
a < e\/éf -+ e—\/&)

= i\/@ (1 + tanh(v/c€))

(

—uf (sce (2)),

+_ 12¢
u = _—
& a(l + e2Ves)

N 12ce=V<€
a(eVet + e~ Ve)

1330007-12

U = U

N 6c . evVes — e=Ve€
a ;< _e\/55+e\ﬁ5>

= i\/GC (1 — tanh(y/c£))

a

=ul  (see (3)). (46)

From (14)—(17) and (45) and (46), we get prop-
erties (1),—(1). of Proposition 1.
When \ = ?%, via (14) and (15) it follows that

+
g

B 120c
— | 10a + Q(e2VeE 4 e—2Ve)

_ 60c
~\/ 5a 4+ Qcosh(2/c€)

=i (see (8)), (47)

which is property (1)q of Proposition 1.
When A < 0, via (14) and (15), it follows that

3600c]| |

- \/300@\)\\ — 2e2VeE — 900 N2e— 2Vt

(48)
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and Via (52) we obtain property (2)q of the Propo-
sition 1. Hereto, we have completed the derivations
ut = 3600c|A| . (49) for Proposition 1.
& 300a|\| — Q2e=2VeE — 900\2e2VE
Furthermore, when b = —45—;8 and A = —g, we 3.2. The de'lfztva,tzons to
have Proposition 2

In the first integral (39), letting h = H(«,0), it

12¢
+ - = follows that
ug =+ a(l + e—2V) -
—a
y==+\ V(=) + ), (53)
. 12cevVes
- a(eVeE — e V) where 19 and « are given in (21) and (25), respec-
tively. Substituting (53) into the first equation
. 6 oVt 1 oot of (38) and integrating it, we get
i /A " /@ ds b, o)
o q \/(a2 _ 32)2(32 _ MO) - 15 >
- j:\/;(1 + coth(v/ef)) where ¢ is an arbitrary constant number.
L Completing the integral above and solving the
=up (see (18)), (50) equation for ¢, it follows that
and :‘:< 2 4a1Men2£ )%
= o — y
+_ 4 12¢ 7 (b3 — day) + p2e2mt — 2by pemt
e a(l — e2Vet) (55)
where a, 72 are given in (25) and (28) respectively,
_ \/ 12ce~V<es and p = p(q) is an arbitrary constant number, and
a(emVe —eVet) A(A + 5a)
M=o (56)
6c 1 e\/Eg + e*\/zﬁ
B R Y and
AN+ 5
- by = 762 <. (57)
c a
= /%0 cotheg(vae) . e
a Similar to the derivations for u;~ and ug, we get
— ugil (see (19)). (51) ui and ui (see (23), (24)) from (55).
. . When b = —5—“, it follows that a = 2 E,
Via (48)(51), we get properties (2)a~(2)c of 0=0,w=15a an(fS;g = 2,/c. Therefore, from (2?3)
Proposition 1. I et v N )
When \ — 7%’ from (48) and (49) we have and (24) it is seen that wj and wu; respectively
become uf, and ug (see (29), (30)) when b = — 22
ufi = ug.t }Slpecially, when a > 0, b = —45—5(: and p = %, we
ave
B 120¢ TE
10a — Q(e2Ve€ + e=2Vet) Uf =F m
B 60c 6
~\/ 5a — Qcosh(2/c€) = :F\/;(l — tanh(y/c&))
= ufig (see (20)). (52) =ub  (see (3)), (58)
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and

:FJ (1 + tanh(v/26))
(see (2)). (59) (ii) When (a,b) € Ay and p = |uo| =

:F
ua

For other cases of u, we derive the properties

12¢ as follows:

a(e=2Vet 1)

(2°), and (2°)y,.

| have

and

_ 4 al6aby + (2A — 5a)e™¢]
/3602022 — 12abu(4A + 5a)e™é + (5a — 2A)2e2rE

y
a(2A — 5a)(emt — 1)
vV (5a — 2A)2 — 2(5a — 2A)(4A + 5a)e2 + (5a — 2A)2e2m2¢

/208 = 5a(em8/? — emm2E/2)
V/(2A — 5a)(e=m€ + e28) + 2(4A + 5a)

20/2A — ba sinh(%)
V2(2A — 5a) cosh(n2€) + 8A + 10a

20/ 2 — 5a sinh <%§>

\/4(2A — 5a) sinh? (77?) + 12A

==

B (50 + A)(5a — 2A)
~ T\ 6ab[3A + (2A — 5a) sinh?(1,£)]

=ug  (see (5)),

C

sinh (7€)

+_ a(6abp + de~"m2¢)
U =
' V/36a2b2 2 — 12abpw e~2€ 4 §2e—2m2€

a(2A — 5a)(e™™E — 1)

V(2A = 5a)2 + 2(2A — 5a)(4A + 5a)e=™¢ + (2A — 5a)2e—2m2¢

Ozm@*%ﬁﬂ _ en2£/2)
\/(QA — 5@)(e772§ + e—nzf) + 2(4A + 5a)

2ay/2A — ba sinh <77;_§>
V/2(2A — 5a) cosh(n2€) + 8A + 10a

=7F

. \/ (5a + A)(5a — 2A) sinh(me)

6ab[3A + (2A — 5a) sinh?(1,€)]
=ul (see (5)).

1330007-14

(i) When p # +|ugl, from (23) and (24) and (29)
and (30), we obtain properties (1°),—(1°). and

5a—2A
6ab

we

(61)
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(iii) When (a,b) € A3 and p = |po| = 2%;)5“ > 0 (see Lemma 1) which implies 5a — 2A > 0, we have

a(2A — 5a)(1 + em9)
vV (5a — 2A)2 + 2(5a — 2A)(4A + 5a)e™€ + (5a — 2A)2e2nE

+ _
uh—:t

a(5a — 2A)(1 + e7m8)
V(5a —2A)\/(5a — 2A)(1 + e2128) + 2(4A + 5a)eé

=F

ay/2(ba — 2A) cosh<%>

v/ (5a — 2A) cosh(n2€) + 4A + 5a
=ui  (see (32)), (62)
and

t_ a(2A — 5a)(1 4 e ™9)
' V(5a —2A)2 + 2(5a — 2A)(4A + 5a)e=m¢ + (5a — 2A)2e—2m2¢

ay/205a — 2A) cosh (%)

V/(5a — 2A) cosh(1m2€) + (4A + 5a)

- 2(50 — 28) 2§
- ¢\/(5a +4A) + (5a — 2A) Cosh(772§)acosh<7>

=u  (see (32)). (63)
(iv) When (a,b) € As and u = —|up| = 2%&)5“ < 0 (see (22)) which implies 2A — 5a > 0, we have
1 a(6abp + & %)
Uy

=+
V/36a2b2 2 — 12abpw ™26 + §2 2128

a(2A — 5a)(1 + em9)
V(2A — 5a)2 — 2(2A — 5a)(4A + 5a)e™€ + (2A — 5a)2e?nrE

/2025 — 5a) cosh (%)

v/ (2A — 5a) cosh(n2€) — (4A + 5a)

= 2(5a — 2A) ot
- i\/(Sa +4A) + (ba — 2A) cosh(n2£)04 Cosh< 5 >

= uji (see (32)), (64)

and

+_ 4 a(6abu + 6 e~™¢)
u: =
' V3642022 — 12abpw e~2€ 4 §2e—2m2¢

a(2A — 5a)(1 4 e ™)
V(2A —5a)2 — 2(2A — 5a)(4A + 5a) e 128 4 (2A — 5a)2? e~ 228
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ammh(%>

V/(2A — 5a) cosh(n2€) — (4A + 5a)

= uJjE (see (32)).

(65)

(v) When (a,b) € Az and p = —|pg| = 322 < 0 (see (21) and (22)) which implies 5a — 2A > 0, we have

and

u

+

u, ==+

+

i =

6ab
al6aby + (2A — 5a)e™¢]
/3602022 — 12abpu(4A + 5a)em2¢ + (2A — 5a)2e?m2¢

a(ba — 2A)(1 — em¥)
vV (5a — 2A)2 — 2(5a — 2A)(4A + 5a)e™€ + (5a — 2A)2e2nE

20v/5a — 2A sinh<%§>

vV (5a — 2A)(e=m€ + e2€) — 2(4A + 5a)

2av/ba — 2A sinh <77;_§>
V2(5a — 2A) cosh(n2€) — 2(4A + 5a)

20/6a — 2A sinh (77;—£>

:F

%(5@ —2A) — 2(4A + 5a) + 4(5a — 2A) sinh? <%§>

5a — 2A
T 3ar (5a — 2A) sinh? (1, &)

(50 + A)(5a — 2A)
6ab[3A + (2A — 5a) sinh? (1 €)]

asinh(n;€)

¥ sinh (1)

ud  (see (5)),

albabu + (2A — 5a)e™™¢]
/36020212 — 12abu(4A + 5a)e¢ + (2A — 5a)2e~2m2¢

a(5a — 2A)(1 — e7"m8)

V(5a —2A)2 — 2(5a — 2A)(4A + 5a)e=m¢ + (2A — 5a)2e—2m2¢

20v/Ba — 2A sinh <%§>

V(5a — 2A)(em€ + =€) — 2(4A + 5a)

2av/ba — 2A sinh (77;—£>
V2(5a — 2A) cosh(n2€) — 2(4A + 5a)
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2a/ba — 2A sinh(n;€)

=4

\/2(5a —2A) — 2(4A + 5a) 4 4(5a — 2A) sinh <’%§>

(5a — 2A)(5a + A)

sinh(n1€) = ug

= i\/Gab[?:A + (QA — 5@) Sinh2<771§>]

Hereto, we have finished the derivations for
Proposition 2.

3.3. The derivations to
Proposition 3
Firstly, when (a,b) belongs to one of Ay, A3 and Iy,

in the first integral (39), let h = H(3,0). Thus we
have

—ab
y=+\ 1 V- @+, (68
where
2A + 5a
)= 28t (69)

5ab
Similarly, we get

_ o[B8yl — cos(n2€)]
L i\/ o —ycos(ng) (70)

where
5a — 4A
o= ——".
6ab
From (70) we get uj- as (33).
Secondly, when b = —%, it follows that

a=[0p= \/% (see (25) and (41)). (72)

(see (5)). (67)

A i\/ (A — 5a)(2A + 5a)[1 — cos(13)]
k 6ab[5a — 4A — (5a + 2A) cos(n3€)]

In the first integral (39), letting b = —2% and

36¢
h = H(\/%,O), we have

4+ <2@>3/2 (73)

Similarly, we have

o= (7

Va(=3 + c€2)’
which yields u" as (35).
Thirdly, from (33) it is easy to see that prop-
erty (iii) is true.
Finally, we derive property (iv). Note that

lim A= lim 5a(5a + 36bc)
b—— 2 40 b—— 29 40
=0, (75)
and
22 d¢4

cos(13€) = 1—%+%+m

B A(A — 5a)€? 9

= 1—W+O(A ). (76)

Thus we have

(A —5a)%(2A + 5a)A¢?
(90ab) + O(A?)
—6A + (5a + 2A)(A — 5a)A¢?
(90ab) + O(A?)

6ab

(A —5a)?(2A + 5a)€2 + O(A)

- \/ 6ab[—540ab + (5a + 2A)(A — 5a)€2 + O(A)]’

Furthermore, we get

6 x 125c2a3¢2

(77)
: ., (A —5a)2(2A + 5a)&2 + O(A)
M (Hll%wi\/ 6ab|—540ab 1 (5a 1 2A)(A — 5a)€% + O(A)]
_ Vg _x
— e =u; (see (35)). (78)

- \/—5a2(75a2 — 25a2c2€2)
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Hereto, we have completed the derivations for
our main results.

4. Conclusions

In this paper, we have investigated the explicit
expressions of the nonlinear waves and their bifur-
cations in Eq. (1).

Firstly, we obtained four types of new expres-
sions. The first type includes four common explicit
expressions of the symmetric solitary waves, the
low-kink waves and the blow-up waves. For the
first type of common explicit expressions, see (14)
and (15). For the symmetric solitary waves,
see Figs. 2(a)-2(c). For the low-kink waves, see
Fig. 2(d) or 3(d). For the blow-up waves, see
Figs. 3(a)-3(c) or 5(a)-5(d). The second type
is composed of four common explicit expressions
of the tall-kink waves, the low-kink waves, the
anti-symmetric solitary waves and the blow-up
waves. For the second type of common explicit
expressions, see (23) and (24). For the tall-kink
waves, see Figs. 7(a)-7(c). For the low-kink waves,
see Fig. 7(d) or 8(d). For the anti-symmetric soli-
tary waves, see Figs. 8(a)-8(c). For the blow-up
waves, see Figs. 11(a)-11(d) or 12(a)-12(c). The
third type is made of two trigonometric expressions
of the periodic-blow-up waves. For the trigonomet-
ric expressions, see (33). For the periodic-blow-
up waves, see Figs. 13(a)-13(c). The fourth type
is composed of two fractional expressions of the
1-blow-up waves. For the fractional expressions,
see (35). For the 1-blow-up waves, see Fig. 13(d).

Secondly, we revealed two kinds of new bifurca-
tion phenomena. The first phenomenon is that the
low-kink waves can be bifurcated from four types
of nonlinear waves, the symmetric solitary waves
(see Fig. 2), the blow-up waves (see Fig. 3), the
tall-kink waves (see Fig. 7), and the anti-symmetric
solitary waves (see Fig. 8). The second phenomenon
is that the 1-blow-up waves can be bifurcated from
the periodic-blow-up waves (see Fig. 13).

Thirdly, we have shown that many previous

results are some special cases. For instance, uf and
+ : : + + + +
up are included in ug, ug, uy and ui (see (2),

(3), (14), (15), (23), (24), (1), and (1°),). uF are
included in ui, ui (see (23), (24) and (31)). ui
and uF are included in u?c, uét (see (8), (9), (14),
(15) and (1)q).

Finally, we have pointed that the nonlinear
wave solutions given in the literature cannot bifur-

cate out a nontrivial solution (see Figs. 4 and 9).

We have also verified and confirmed these solutions
by using the software Mathematica. For example,
for uf , the orders are as follows:

a=12;
c=2;
— 50/'
~ 36¢
E=x—ct;

ok
Va(c€? = 3)

Simplify [D[u, t]+a(1+bu?)u?D[u, z]+ D|u, {z, 3}]].
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