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EXISTENCE AND CRITICAL SPEED OF TRAVELING

WAVE FRONTS IN A MODIFIED VECTOR DISEASE

MODEL WITH DISTRIBUTED DELAY

WEIFANG YAN and RUI LIU

Abstract. In this paper, we consider a modified disease model with
distributed delay. The existence of traveling wave fronts connecting
the zero equilibrium and the positive equilibrium is established by
using an iterative technique and a nonstandard ordering for the set of
profiles of the corresponding wave system. We also study the critical
wave speed and give a detailed analysis on its location and asymptotic
behavior with respect to the time delay. Our work extends some
previous results.

1. Introduction

Traveling wave solutions have been widely studied for nonlinear reaction-
diffusion equations modeling a variety of physical and biological phenomena
(see, e.g., [1–5]), for time-delayed reaction-diffusion equations (see, e.g., [6–
9]), and for nonlocal delayed reaction-diffusion equations (see, e.g., [10–12]).

Recently, Zhang [13] studied the modified host-vector disease model

∂u(t, x)

∂t
=
∂2u(t, x)

∂x2
− au(t, x) + b[1− u(t, x)]

×
∫ t

−∞

∫

∞

−∞

F (t, s, x, y)u(s, y)dyds+ ru(t, x)[1 − u(t, x)], (1)

where the function u(t, x) denotes the normalized spatial density of in-
fectious host at time t > 0 and spatial location x ∈ R, a > 0 is the
cure/recovery rate of the infected host, b > 0 is the host-vector contact
rate, F (t, s, x, y) is the convolution kernel, which is positive, continuous in
its variables (t, s) ∈ D := {(t, s) : t ≥ 0,−∞ < s ≤ t}, and Borel measur-
able in its variables x, y ∈ R, r ≥ 0 denotes the susceptible-infected host
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contact rate. For F (t, s, x, y) = F (t− s, x− y) with

F (t, x) =
t

τ2
√
4πt exp

(

t

τ
+
x2

4t

) ,

Zhang [13] proved the existence of traveling wave fronts by using the geo-
metric singular perturbation theory. For F (t, s, x, y) = δ(x−y)G(t−s) with
δ(x) being the Dirac δ--function and

G(t) =
t

τ2exp (t/τ)
,

Huang and Huo [14] proved the existence of traveling wave fronts by using
the theory developed in [15]. They also showed that the critical wave speed
decreases as the time delay increases.

If r = 0, then Eq. (1) reduces to

∂u(t, x)

∂t
=
∂2u(t, x)

∂x2
− au(t, x) + b[1− u(t, x)]

×
∫ t

−∞

∫

∞

−∞

F (t, s, x, y)u(s, y)dyds, (2)

which has been considered by Ruan and Xiao [16]. The global stability of
steady states for model (2) was obtained in [16] when x, y ∈ Ω ⊂ R and Ω
is bounded. In the case F (t, s, x, y) = δ(x− y)G(t− s) and

G(t) =
t

τ2exp (t/τ)
,

Ruan and Xiao [16] also showed that for any c0 ≥ 2
√
b− a, there exists a

small number τ0 = τ0(c0) > 0 such that for any τ ∈ [0, τ0], the model (2)

admits a traveling wave front connecting two equilibria 0 and
b− a

b
with

the wave speed c = c(τ) close to c0. Lv and Wang [17] studied the existence,
uniqueness and asymptotic behavior of traveling wave fronts for Eq. (2) with
F (t, s, x, y) = F (t− s, x− y) and

F (t, x) =
1

τ
√
4πt exp

(

t

τ
+
x2

4t

) .

For a large class of delayed reaction-diffusion equations, Lv and Wang [18]
proved that the traveling wave fronts are exponentially stable to pertur-
bations in some exponentially weighted L∞ spaces and obtained the time
decay rates by the weighted energy method, which is recently developed by
Mei et al [19, 20].
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If F (t, s, x, y) = δ(x − y)δ(t− s− τ), then (2) becomes the model

∂u(t, x)

∂t
=
∂2u(t, x)

∂x2
− au(t, x) + b[1− u(t, x)]u(t− τ, x). (3)

Lin and Hong [21] showed that there exist a critical wave speed c∗ and a
delay parametric value τ∗(c) (c > c∗) such that for any τ < τ∗(c), Eq. (3)

has a traveling wave front connecting the two equilibria 0 and
b− a

b
.

In [22] a time delay reaction diffusion equation with nonlocality for the
population dynamics of single species was studied. For the critical wave
speed, a detailed analysis was given on its location and asymptotic behav-
ior with respect to the parameters of the diffusion rate and mature age,
respectively. Recently, Wei et al [23] also gave a remark on critical wave
speed for Nicholson’s blowflies equation with diffusion.

In this paper, we consider model (1) with F (t, s, x, y) = δ(x− y)G(t− s)
and

G(t) =
tn

n! τn+1 exp (t/τ)
or G(t) =

sin (t/τ) + cos (t/τ)

τ exp (t/τ)
.

Firstly, we prove the existence of traveling wave fronts by using the theory
developed in [15]. Secondly, for the critical wave speed, we give a detailed
analysis on its location and asymptotic behavior with respect to the time
delay. Our work extends some previous results in [14].

The rest of this paper is organized as follows. In Sec. 2, we recall the
main theorem from [15] that will be employed in this paper. Sec. 3 is
devoted to the proof of the existence of traveling wave fronts of (1) with
two different delay kernels by the theory developed in [15]. In Sec. 4, we
give some analysis on the critical wave speed.

2. Preliminaries

In [15] the nonlinear integro-differential equation with diffusion and the
distributed delay of a general view was investigated. The existence theorem
of traveling wave fronts was formulated. The traveling wave fronts can be
estimated by upper solution and lower solution respectively. The theory
developed in [15] is quite general and can be extended to coupled systems
as well as scalar equations.

Consider the following reaction-diffusion equation with nonlocal delays:

∂u(t, x)

∂t
= D

∂2u(t, x)

∂x2
+ f(u(t, x), (g ∗ u)(t, x)), (4)

where t ≥ 0, x ∈ R, D > 0, f ∈ C(R2,R), and

(g ∗ u)(t, x) =
∫ t

−∞

∫

∞

−∞

g(t− s, x− y)u(s, y)dyds;
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the kernel g(t, x) is any integrable nonnegative function satisfying

g(t, x) = g(t,−x),
∫

∞

0

∫

∞

−∞

g(s, y)dyds = 1;

and
∫

∞

−∞

g(t, x)dx

is uniformly convergent for t ∈ [0, a], a > 0. In other words, ∀ ε > 0,
∃M > 0, such that

∫

∞

M

g(t, x)dx < ε

for any t ∈ [0, a].
Letting u(t, x) = ϕ(ξ) with ξ = x+ ct, then Eq. (4) becomes

−Dϕ′′(ξ) + cϕ′(ξ) = f(ϕ(ξ), (g ∗ ϕ)(ξ)), (5)

where

(g ∗ ϕ)(ξ) =
∫

∞

0

∫

∞

−∞

g(s, y)ϕ(ξ − y − cs)dyds.

Let

BC(R,R) =

{

ϕ ∈ C(R,R) : sup
ξ∈R

|ϕ(ξ)| <∞
}

,

and

BC2(R,R) = {ϕ ∈ BC(R,R) : ϕ′, ϕ′′ ∈ BC(R,R)} .
A traveling wave front of (4) with wave speed c > 0 is a function ϕ(x+ ct),
ϕ ∈ BC2(R,R), satisfying (5) and the following boundary conditions:

lim
ξ→−∞

ϕ(ξ) = 0, lim
ξ→∞

ϕ(ξ) = K > 0. (6)

We will employ the following hypotheses:
(H1) f(u, u) = 0 when u = 0 or K;
(H2) There exists a constant β > 0 such that

f(φ(ξ), (g ∗ φ)(ξ)) + βφ(ξ) ≥ f(ψ(ξ), (g ∗ ψ)(ξ)) + βψ(ξ),

where φ, ψ ∈ C(R,R) satisfy 0 ≤ ψ(ξ) ≤ φ(ξ) ≤ K for ξ ∈ R.
Next we define upper solution and lower solutions for (5).

Definition 1. A continuous function ϕ is called an upper solution of (5)
if ϕ′ and ϕ′′ exist almost everywhere and are essentially bounded on R, and
ϕ satisfies the inequality

−Dϕ′′(ξ) + cϕ′(ξ) ≥ f(ϕ(ξ), (g ∗ ϕ)(ξ)), a.e. on R. (7)

A lower solution of (5) is defined similarly by reversing the inequality sign
in (7).
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Let

BC[0,K] = {ϕ ∈ BC(R,R) : 0 ≤ ϕ(ξ) ≤ K} ,
Y = {ϕ ∈ BC(R,R) : ϕ′, ϕ′′ ∈ L∞(R,R)} ,

and

Γ =

{

ϕ ∈ Y : lim
ξ→−∞

ϕ(ξ) ∈ [0,K), lim
ξ→∞

ϕ(ξ) = K;ϕ is nondecreasing in R

}

.

Define an operator F : BC[0,K] → BC(R,R) by

(Fϕ)(ξ) = f(ϕ(ξ), (g ∗ ϕ)(ξ)), ξ ∈ R.

Now, we rewrite Corollary 4.9 in [15] as follows.

Lemma 2 ( [15]). Assume that (H1) and (H2) hold, and there exists

some δ such that f(u, u) 6= 0 for 0 < δ ≤ u < K. Also assume that φ
and ψ, where φ ∈ Γ with lim

ξ→−∞

φ(ξ) = 0, and ψ ∈ BC[0,K] ∩ Y with

δ ≤ sup
ξ∈R

ψ(ξ), ψ ≤ φ are upper and lower solutions of (5), respectively, then

Eq. (4) has a traveling wave solution ϕ such that (6) holds.

3. Existence of traveling wave fronts

In this section, we derive the sufficient condition for the existence of
traveling wave fronts of Eq. (1) with two different delay kernels.

3.1. The case of F (t, s, x, y) = δ(x − y)
(t− s)n

n! τn+1
e−

t−s

τ , with τ > 0 and

n ∈ N. In this case, Eq. (1) becomes

∂u(t, x)

∂t
=
∂2u(t, x)

∂x2
− au(t, x) + b[1− u(t, x)]

×
∫ t

−∞

(t− s)n

n! τn+1
e−

t−s

τ u(s, x)ds+ ru(t, x)[1 − u(t, x)], (8)

where τ > 0 measures the delay. It is easy to know that Eq. (8) has two

nonnegative equilibrium points 0 and
r + b− a

r + b
, if r+ b > a. Converting of

Eq. (8) into the traveling wave form with u(t, x) = ϕ(ξ) and ξ = x+ ct, we
obtain

ϕ′′(ξ) − cϕ′(ξ)− aϕ(ξ) + b(1− ϕ(ξ))

∫

∞

0

sn

n!τn+1
e−

s

τ ϕ(ξ − cs)ds

+ rϕ(ξ)(1 − ϕ(ξ)) = 0. (9)

We seek a solution of this equation satisfying the asymptotic boundary
conditions

lim
ξ→−∞

ϕ(ξ) = 0, lim
ξ→∞

ϕ(ξ) =
r + b− a

r + b
. (10)
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For convenience, throughout this section, we set

K =
r + b− a

r + b
< 1,

and

f(ϕ(ξ), (g ∗ ϕ)(ξ)) = −aϕ(ξ) + b(1− ϕ(ξ))(g ∗ ϕ)(ξ) + rϕ(ξ)(1 − ϕ(ξ)),

where

(g ∗ ϕ)(ξ) =
∫

∞

0

sn

n!τn+1
e−

s

τ ϕ(ξ − cs)ds.

In the following, Lemma 2 is applied to obtain the existence of traveling
wave fronts for Eq. (8).

Obviously, the function f(ϕ(ξ), (g ∗ ϕ)(ξ)) satisfies the hypothesis (H1).
Next, we prove that f(ϕ(ξ), (g ∗ ϕ)(ξ)) satisfies (H2).

Lemma 3. The function f(ϕ(ξ), (g ∗ ϕ)(ξ)) satisfies (H2).

Proof. Fix β > r + b + a. For any φ, ψ ∈ C(R,R) and satisfying the
inequalities 0 ≤ ψ(ξ) ≤ φ(ξ) ≤ K < 1, we have

f(φ(ξ), (g ∗ φ)(ξ)) − f(ψ(ξ), (g ∗ ψ)(ξ))
= (−aφ(ξ) + b(1− φ(ξ))(g ∗ φ)(ξ) + rφ(ξ)(1 − φ(ξ)))

− (−aψ(ξ) + b(1− ψ(ξ))(g ∗ ψ)(ξ) + rψ(ξ)(1 − ψ(ξ)))

= (r − a) (φ(ξ) − ψ(ξ)) + b ((g ∗ φ)(ξ) − (g ∗ ψ)(ξ))
− b (φ(ξ)(g ∗ φ)(ξ) − ψ(ξ)(g ∗ ψ)(ξ)) − r

(

φ2(ξ) − ψ2(ξ)
)

= (r − a) (φ(ξ) − ψ(ξ)) + b(1− φ(ξ)) ((g ∗ φ)(ξ) − (g ∗ ψ)(ξ))
− b (φ(ξ)− ψ(ξ)) (g ∗ ψ)(ξ)− r (φ(ξ) + ψ(ξ)) (φ(ξ) − ψ(ξ))

≥ (r − a) (φ(ξ) − ψ(ξ))− b (φ(ξ) − ψ(ξ))− 2r (φ(ξ) − ψ(ξ))

= −(r + b+ a) (φ(ξ)− ψ(ξ))

> −β (φ(ξ) − ψ(ξ)) .

Therefore, f(ϕ(ξ), (g ∗ ϕ)(ξ)) satisfies (H2).

Now, we construct an upper solution and a lower solution for Eq. (9) to
satisfy the assumptions in Lemma 2. Introduce the notation

∆1(c, λ) = λ2 − cλ+ (r − a) +
b

(1 + λcτ)n+1
. (11)

Since

∆1(0, λ) = λ2 + r + b− a 6= 0,

we know ∆1(0, λ) = 0 has no real positive roots. By the continuity, for
sufficiently small c > 0, ∆1(c, λ) = 0 still has no real positive roots. For
any c > 0, we have

∆1(c, 0) = r + b− a > 0,
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lim
λ→∞

∆1(c, λ) = ∞,

∂

∂c
∆1(c, λ) = −λ− (n+ 1)bλτ

(1 + λcτ)n+2
< 0, λ ∈ (0,∞),

and
∂2

∂λ2
∆1(c, λ) = 2 +

(n+ 1)(n+ 2)bc2τ2

(1 + λcτ)n+3
> 0.

So, it is easy to see that the equation ∆1(c, λ) = 0 has two real positive
roots as c increases and the following result holds.

Lemma 4. There exist c∗1 > 0 and λ∗1 > 0 such that

(i)

∆1(c
∗

1, λ
∗

1) = 0,

∂

∂λ
∆1(c

∗

1, λ)

∣

∣

∣

∣

λ=λ∗

1

= 0; (12)

(ii) for 0 < c < c∗1 and λ > 0, we have ∆1(c, λ) > 0;
(iii) for c > c∗1, the equation ∆1(c, λ) = 0 has two real positive roots,

which are denoted by 0 < λ1 < λ2, and we have

∆1(c, λ)











> 0, for 0 < λ < λ1,

< 0, for λ1 < λ < λ2,

> 0, for λ > λ2.

(13)

The c∗1 > 0 is called the critical wave speed. Now we set

φ(ξ) = min{K,Keλ1ξ},
ψ(ξ) = max{0,K(1−Meεξ)eλ1ξ},

where M > 1 and ε > 0 are two constants to be determined later.

Lemma 5. (i) φ(ξ) is nondecreasing in ξ ∈ R and satisfies the boundary

condition (10);
(ii) 0 ≤ ψ(ξ) ≤ φ(ξ) ≤ K, ξ ∈ R.

Proof. (i) The conclusion is obvious.
(ii) Obviously 0 < φ(ξ) ≤ K and ψ(ξ) ≥ 0, we only need to verify

ψ(ξ) ≤ φ(ξ) for all ξ ∈ R.

Let ξ0 = −1

ε
lnM < 0. For ξ > ξ0, we have

0 = ψ(ξ) < φ(ξ).

For ξ ≤ ξ0, we have

ψ(ξ) = K(1−Meεξ)eλ1ξ < Keλ1ξ = φ(ξ).

Thus,
0 ≤ ψ(ξ) ≤ φ(ξ) ≤ K

for all ξ ∈ R.
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Lemma 6. Assume that c > c∗1, then φ(ξ) is an upper solution of Eq. (9)
and φ(ξ) ∈ Γ.

Proof. φ(ξ) ∈ Γ is obvious.
(i) If ξ > 0, then

φ(ξ) = K,

φ′(ξ) = 0,

φ′′(ξ) = 0,

0 < φ(ξ − cs) ≤ K.

Introduce the notation

h(φ)(ξ) = φ′′(ξ)− cφ′(ξ)− aφ(ξ)

+ b(1− φ(ξ))

∫

∞

0

sn

n!τn+1
e−

s

τ φ(ξ − cs)ds+ rφ(ξ)(1 − φ(ξ)).

(14)

It follows that

h(φ)(ξ) ≤ −aK + bK(1−K) + rK(1−K) = 0.

(ii) If ξ ≤ 0, then

φ(ξ) = Keλ1ξ,

φ′(ξ) = Kλ1e
λ1ξ,

φ′′(ξ) = Kλ21e
λ1ξ,

φ(ξ − cs) = Keλ1(ξ−cs).

We have
∫

∞

0

sn

n! τn+1
e−

s

τ φ(ξ − cs)ds = K

∫

∞

0

sn

n! τn+1
e−

s

τ eλ1(ξ−cs)ds

=
Keλ1ξ

(1 + λ1cτ)n+1
.

Then

h(φ)(ξ) = K
(

λ21e
λ1ξ − cλ1e

λ1ξ + (r − a)eλ1ξ
)

+ bK(1−Keλ1ξ)
eλ1ξ

(1 + λ1cτ)n+1
− rK2e2λ1ξ

≤ K

(

λ21e
λ1ξ − cλ1e

λ1ξ + (r − a)eλ1ξ +
beλ1ξ

(1 + λ1cτ)n+1

)

= Keλ1ξ∆1(c, λ1) = 0.

Therefore, φ(ξ) is an upper solution of Eq. (9).
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Next, we need a lower solution. Recall that λ1 and λ2 are two real
positive roots of the equation ∆1(c, λ) = 0. Now, let ε > 0 be sufficiently
small such that ε < λ1, λ1 < λ1 + ε < λ2 (so that ∆1(c, λ1 + ε) < 0). We
have the following lemma.

Lemma 7. If M > max

{

1,− K
(

4r(1 + λ1cτ)
n+1 + b

)

(1 + λ1cτ)n+1∆1(c, λ1 + ε)

}

, then ψ(ξ)

is a lower solution of Eq. (9).

Proof. Let ξ0 = −1

ε
lnM < 0.

(i) If ξ > ξ0, then

ψ(ξ) = ψ′(ξ) = ψ′′(ξ) = 0,

ψ(ξ − cs) ≥ 0.

Introduce the notation

h(ψ)(ξ) = ψ′′(ξ)− cψ′(ξ)− aψ(ξ)

+ b(1− ψ(ξ))

∫

∞

0

sn

n!τn+1
e−

s

τ ψ(ξ − cs)ds+ rψ(ξ)(1 − ψ(ξ)).

(15)

Then we have

h(ψ)(ξ) = b

∫

∞

0

sn

n!τn+1
e−

s

τ ψ(ξ − cs)ds ≥ 0.

(ii) If ξ ≤ ξ0, then we have

ψ(ξ) = K(1−Meεξ)eλ1ξ,

ψ(ξ − cs) = K(1−Meε(ξ−cs))eλ1(ξ−cs),

ψ′(ξ) = K[λ1 −M(λ1 + ε)eεξ]eλ1ξ,

ψ′′(ξ) = K[λ21 −M(λ1 + ε)2eεξ]eλ1ξ.
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Further,
∫

∞

0

sn

n!τn+1
e−

s

τ ψ(ξ − cs)ds

= K

∫

∞

0

sn

n!τn+1
e−

s

τ (1−Meε(ξ−cs))eλ1(ξ−cs)ds

= Keλ1ξ

∫

∞

0

sn

n!τn+1
e−

s

τ e−λ1csds

−KMe(λ1+ε)ξ

∫

∞

0

sn

n!τn+1
e−

s

τ e−(λ1+ε)csds

=
Keλ1ξ

(1 + λ1cτ)n+1
− KMe(λ1+ε)ξ

(1 + (λ1 + ε)cτ)
n+1

≥ 0,

and

ψ(ξ)

∫

∞

0

sn

n!τn+1
e−

s

τ ψ(ξ − cs)ds ≤ φ(ξ)

∫

∞

0

sn

n!τn+1
e−

s

τ ψ(ξ − cs)ds.

Hence, it follows that

h(ψ)(ξ) ≥ K
(

λ21 −M(λ1 + ε)2eεξ
)

eλ1ξ − cK
(

λ1 −M(λ1 + ε)eεξ
)

eλ1ξ

+ K(r − a)(1−Meεξ)eλ1ξ − rK2(1 −Meεξ)2e2λ1ξ

+ bK(1−Keλ1ξ)

(

eλ1ξ

(1 + λ1cτ)n+1
− Me(λ1+ε)ξ

(1 + (λ1 + ε)cτ)n+1

)

≥ Keλ1ξ

(

λ21 − cλ1 + (r − a) +
b

(1 + λ1cτ)n+1

)

−KMe(λ1+ε)ξ

×
(

(λ1 + ε)2 − c(λ1 + ε) + (r − a) +
b

(1 + (λ1 + ε)cτ)
n+1

)

− bK2e2λ1ξ

(1 + λ1cτ)n+1
+
bK2Meλ1ξe(λ1+ε)ξ

[1 + (λ1 + ε)cτ ]
n+1 − rK2(1−Meεξ)2e2λ1ξ

≥ Keλ1ξ∆1(c, λ1)−KMe(λ1+ε)ξ∆1(c, λ1 + ε)− bK2e2λ1ξ

(1 + λ1cτ)n+1

− rK2(1 −Meεξ)2e2λ1ξ.

Since ξ ≤ ξ0 < 0 and ε < λ1, we have eλ1ξ < eεξ and

(1 −Meεξ)2 < (1 +Meεξ)2 ≤ (1 +Meεξ0)2 ≤ (1 + 1)2 = 4.

Therefore, we obtain

h(ψ)(ξ) ≥ Ke(λ1+ε)ξ

(

−M∆1(c, λ1 + ε)− bK

(1 + λ1cτ)n+1
− 4rK

)

≥ 0.

Therefore, ψ(ξ) is a lower solution of Eq. (9).
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Furthermore, we have
lim

ξ→−∞

φ(ξ) = 0,

sup
ξ∈R

ψ(ξ) =
Kε

λ1 + ε

(

λ1
M(λ1 + ε)

)

λ1
ε

≥ δ > 0,

and
f(u, u) 6= 0 for u ∈ [δ,K) .

From what has been discussed above and by Lemma 2, we can obtain
the following result.

Theorem 8. For every c > c∗1 and τ > 0, Eq. (8) always has a travel-

ing wave front with speed c connecting the zero equilibria and the positive

equilibria.

3.2. The case of F (t, s, x, y) = δ(x−y) 1
τ

(

sin
t− s

τ
+ cos

t− s

τ

)

e−
t−s

τ , τ >

0. In this case, Eq. (1) becomes

∂u(t, x)

∂t
=
∂2u(t, x)

∂x2
− au(t, x) + b[1− u(t, x)]

×
∫ t

−∞

1

τ

(

sin
t− s

τ
+ cos

t− s

τ

)

e−
t−s

τ u(s, x)ds+ ru(t, x)[1 − u(t, x)].

(16)

It is easy to know that Eq. (16) has two nonnegative equilibrium points 0
and K. Converting of Eq. (16) into the traveling wave form, we obtain

ϕ′′(ξ) − cϕ′(ξ)− aϕ(ξ) + b(1− ϕ(ξ))

×
∫

∞

0

1

τ

(

sin
s

τ
+ cos

s

τ

)

e−
s

τ ϕ(ξ − cs)ds+ rϕ(ξ)(1 − ϕ(ξ)) = 0. (17)

We seek a solution of this equation satisfying the asymptotic boundary
conditions

lim
ξ→−∞

ϕ(ξ) = 0, lim
ξ→∞

ϕ(ξ) = K. (18)

Let

f(ϕ(ξ), (g ∗ ϕ)(ξ)) = −aϕ(ξ) + b(1− ϕ(ξ))(g ∗ ϕ)(ξ) + rϕ(ξ)(1 − ϕ(ξ)),

where

(g ∗ ϕ)(ξ) =
∫

∞

0

1

τ

(

sin
s

τ
+ cos

s

τ

)

e−
s

τ ϕ(ξ − cs)ds.

We have the following lemma.

Lemma 9. f(ϕ(ξ), (g ∗ ϕ)(ξ)) satisfies (H2).

Proof. The proof is similar to that of Lemma 3, so we omit the details
here.
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Now, we construct an upper solution and a lower solution for Eq. (17) to
satisfy the assumptions in Lemma 2. Introduce the notation

∆2(c, λ) = λ2 − cλ+ (r − a) +
b(2 + λcτ)

1 + (1 + λcτ)2
. (19)

Then

∆2(0, λ) = λ2 + r + b− a 6= 0.

For all c > 0, we have

∆2(c, 0) = r + b− a > 0,

lim
λ→∞

∆2(c, λ) = ∞,

∂

∂c
∆2(c, λ) = −λ− bλτ((λcτ)2 + 4λcτ + 2)

(1 + (1 + λcτ)2)2
< 0, λ ∈ (0,∞),

and

∂2

∂λ2
∆2(c, λ) = 2 +

2bλc3τ3((λcτ)2 + 6λcτ + 6)

(1 + (1 + λcτ)2)3
> 0.

So we have the following result, which is similar to Lemma 4.

Lemma 10. There exist c∗2 > 0 and λ∗2 > 0 such that

(i)

∆2(c
∗

2, λ
∗

2) = 0,

∂

∂λ
∆2(c

∗

2, λ)

∣

∣

∣

∣

λ=λ∗

2

= 0; (20)

(ii) for 0 < c < c∗2 and λ > 0, we have ∆2(c, λ) > 0;
(iii) for c > c∗2, the equation ∆2(c, λ) = 0 has two real positive roots λ1,

λ2, such that 0 < λ1 < λ2 and

∆2(c, λ)











> 0, for 0 < λ < λ1,

< 0, for λ1 < λ < λ2,

> 0, for λ > λ2.

(21)

c∗2 > 0 is the critical wave speed. Now we set

φ(ξ) = min{K,Keλ1ξ},

ψ(ξ) = max{0,K(1−Meεξ)eλ1ξ}.

Lemma 11. Assume that c > c∗2. Then φ(ξ) is an upper solution of

Eq. (17) and φ(ξ) ∈ Γ.
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Proof. φ(ξ) ∈ Γ is obvious.
(i) If ξ > 0, then

φ(ξ) = K,

φ′(ξ) = 0,

φ′′(ξ) = 0,

0 < φ(ξ − cs) ≤ K.

Introduce the notation

h(φ)(ξ) = φ′′(ξ)− cφ′(ξ)− aφ(ξ) + b(1− φ(ξ))

×
∫

∞

0

1

τ

(

sin
s

τ
+ cos

s

τ

)

e−
s

τ φ(ξ − cs)ds+ rφ(ξ)(1 − φ(ξ)).

(22)

It follows that

h(φ)(ξ) ≤ −aK + bK(1−K) + rK(1−K) = 0.

(ii) If ξ ≤ 0, then

φ(ξ) = Keλ1ξ,

φ′(ξ) = Kλ1e
λ1ξ,

φ′′(ξ) = Kλ21e
λ1ξ,

φ(ξ − cs) = Keλ1(ξ−cs).

We have
∫

∞

0

1

τ

(

sin
s

τ
+ cos

s

τ

)

e−
s

τ φ(ξ − cs)ds

= K

∫

∞

0

1

τ

(

sin
s

τ
+ cos

s

τ

)

e−
s

τ eλ1(ξ−cs)ds

=
Keλ1ξ(2 + λ1cτ)

1 + (1 + λ1cτ)2
.

Then

h(φ)(ξ) = K
(

λ21e
λ1ξ − cλ1e

λ1ξ + (r − a)eλ1ξ
)

+ bK(1−Keλ1ξ)
eλ1ξ(2 + λ1cτ)

1 + (1 + λ1cτ)2
− rK2e2λ1ξ

≤ K

(

λ21e
λ1ξ − cλ1e

λ1ξ + (r − a)eλ1ξ +
beλ1ξ(2 + λ1cτ)

1 + (1 + λ1cτ)2

)

= Keλ1ξ∆2(c, λ1)

= 0.

Therefore, φ(ξ) is an upper solution of Eq. (17).
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Next, we need a lower solution. Let ε > 0 be sufficiently small such that
ε < λ1, λ1 < λ1 + ε < λ2. Then we have the following lemma.

Lemma 12. IfM > max

{

1,−K
(

4r + 4r(1 + λ1cτ)
2 + b(2 + λ1cτ)

)

∆2(c, λ1 + ε) (1 + (1 + λ1cτ)2)

}

,

then ψ(ξ) is a lower solution of Eq. (17).

Proof. Let ξ0 = −1

ε
lnM < 0.

(i) If ξ > ξ0, then

ψ(ξ) = ψ′(ξ) = ψ′′(ξ) = 0,

ψ(ξ − cs) ≥ 0.

Introduce the notation

h(ψ)(ξ) = ψ′′(ξ)− cψ′(ξ)− aψ(ξ) + b(1− ψ(ξ))

×
∫

∞

0

1

τ

(

sin
s

τ
+ cos

s

τ

)

e−
s

τ ψ(ξ − cs)ds+ rψ(ξ)(1 − ψ(ξ)).

(23)

Then we have

h(ψ)(ξ) = b

∫

∞

0

1

τ

(

sin
s

τ
+ cos

s

τ

)

e−
s

τ ψ(ξ − cs)ds ≥ 0.

(ii) If ξ ≤ ξ0, then we have

ψ(ξ) = K(1−Meεξ)eλ1ξ,

ψ(ξ − cs) = K(1−Meε(ξ−cs))eλ1(ξ−cs),

ψ′(ξ) = K[λ1 −M(λ1 + ε)eεξ]eλ1ξ,

ψ′′(ξ) = K[λ21 −M(λ1 + ε)2eεξ]eλ1ξ.

Further,
∫

∞

0

1

τ

(

sin
s

τ
+ cos

s

τ

)

e−
s

τ ψ(ξ − cs)ds

= K

∫

∞

0

1

τ

(

sin
s

τ
+ cos

s

τ

)

e−
s

τ (1−Meε(ξ−cs))eλ1(ξ−cs)ds

= Keλ1ξ

∫

∞

0

1

τ

(

sin
s

τ
+ cos

s

τ

)

e−
s

τ e−λ1csds

−KMe(λ1+ε)ξ

∫

∞

0

1

τ

(

sin
s

τ
+ cos

s

τ

)

e−
s

τ e−(λ1+ε)csds

=
Keλ1ξ(2 + λ1cτ)

1 + (1 + λ1cτ)2
− KMe(λ1+ε)ξ(2 + (λ1 + ε)cτ)

1 + (1 + (λ1 + ε)cτ)
2

≥ 0,
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and

ψ(ξ)

∫

∞

0

1

τ

(

sin
s

τ
+ cos

s

τ

)

e−
s

τ ψ(ξ − cs)ds

≤ φ(ξ)

∫

∞

0

1

τ

(

sin
s

τ
+ cos

s

τ

)

e−
s

τ ψ(ξ − cs)ds.

Hence, it follows that

h(ψ)(ξ) ≥ K
(

λ21 −M(λ1 + ε)2eεξ
)

eλ1ξ − cK
(

λ1 −M(λ1 + ε)eεξ
)

eλ1ξ

+K(r − a)(1 −Meεξ)eλ1ξ − rK2(1−Meεξ)2e2λ1ξ

+ bK(1−Keλ1ξ)

(

eλ1ξ(2 + λ1cτ)

1 + (1 + λ1cτ)2
− Me(λ1+ε)ξ(2 + (λ1 + ε)cτ)

1 + (1 + (λ1 + ε)cτ)
2

)

≥ Keλ1ξ

(

λ21 − cλ1 + (r − a) +
b(2 + λ1cτ)

1 + (1 + λ1cτ)2

)

−KMe(λ1+ε)ξ

×
(

(λ1 + ε)2 − c(λ1 + ε) + (r − a) +
b(2 + (λ1 + ε)cτ)

1 + (1 + (λ1 + ε)cτ)2

)

− bK2e2λ1ξ(2 + λ1cτ)

1 + (1 + λ1cτ)2
+
bK2Meλ1ξe(λ1+ε)ξ(2 + (λ1 + ε)cτ)

1 + (1 + (λ1 + ε)cτ)2

− rK2(1−Meεξ)2e2λ1ξ

≥ Keλ1ξ∆2(c, λ1)−KMe(λ1+ε)ξ∆2(c, λ1 + ε)

− bK2e2λ1ξ(2 + λ1cτ)

1 + (1 + λ1cτ)2
− rK2(1 −Meεξ)2e2λ1ξ.

Since ξ ≤ ξ0 < 0 and ε < λ1, we have eλ1ξ < eεξ and

(1 −Meεξ)2 < (1 +Meεξ)2 ≤ (1 +Meεξ0)2 ≤ (1 + 1)2 = 4.

Therefore, we obtain

h(ψ)(ξ) ≥ Ke(λ1+ε)ξ

(

−M∆2(c, λ1 + ε)− bK(2 + λ1cτ)

1 + (1 + λ1cτ)2
− 4rK

)

≥ 0.

Therefore, ψ(ξ) is a lower solution of Eq. (17).

Furthermore, we have

lim
ξ→−∞

φ(ξ) = 0,

sup
ξ∈R

ψ(ξ) ≥ δ > 0,

and

f(u, u) 6= 0 for u ∈ [δ,K) .

From what has been discussed above and by Lemma 2, we can obtain
the following result.
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Theorem 13. For every c > c∗2 and τ > 0, Eq. (16) always has a trav-

eling wave front with speed c connecting the zero equilibria and the positive

equilibria.

4. Analysis on the critical wave speed

In this section, for the critical wave speed, we give a detailed analysis on
its location and asymptotic behavior with respect to the time delay τ . Our
main result is as follows.

Theorem 14. Consider Eq. (8).
(1)If a > r, then the critical wave speed c∗1 satisfies:

(i) Upper and lower bounds of c∗1:

0 ≤ c∗1 ≤ min







2
√
r + b− a,

√

√

√

√

1

τ

(

(

b

a− r

)
1

n+1

− 1

)







. (24)

(ii) Asymptotic behavior of c∗1 with respect to the time delay τ :
Let τ be free, and the other parameters a, b, r and n be fixed, then

lim
τ→0+

c∗1 = 2
√
r + b− a, (25)

lim
τ→+∞

∣

∣

∣

∣

c∗1 −
A

τ

∣

∣

∣

∣

= 0, (26)

where the positive constant A is given by






(n+ 1)(n+ 3)bA2 = 2B
(

1 + B
n+3

)n+2

,

B =
√

1 + (n+ 1)(n+ 3)(a− r)A2 − 1.
(27)

(2) If a = r, then the critical wave speed c∗1 satisfies:

0 ≤ c∗1 ≤ 2
√
b,

and

lim
τ→0+

c∗1 = 2
√
b.

(3) If a < r, then the critical wave speed c∗1 satisfies:

2
√
r − a < c∗1 ≤ 2

√
r + b− a,

and

lim
τ→0+

c∗1 = 2
√
r + b− a.

Proof. (1) If a > r,
(i) Letting

F (c, λ) =
b

(1 + λcτ)n+1
, (28)

G(c, λ) = cλ+ (a− r)− λ2,
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then
∆1(c, λ) = F (c, λ)−G(c, λ),

and the critical point (c∗1, λ
∗) (for convenience, we denote λ∗1 as λ∗) is the

unique tangent point touched by the two surfaces F (c, λ) and G(c, λ). Ob-
viously, F (c∗1, λ) is always above G(c∗1, λ) except the touched point λ∗, see
Fig. 1.

Fig. 1. The graphs of F (c∗1, λ) and G(c
∗

1, λ)

Let

λ1 =
c∗1
2
,

λ2 = c∗1,

λ3 =
c∗1 +

√

c∗21 + 4(a− r)

2
,

where λ1 is the point at which G(c∗1, λ) arrives the maximum

G(c∗1, λ1) = a− r +
c∗21
4
,

λ2 is the non-zero root of the equation G(c∗1, λ) = a − r, and λ3 is the
positive root of the equation G(c∗1, λ) = 0 (for the detail, we refer to Fig. 1).
Since

F (c∗1, λ1) ≥ G(c∗1, λ1),

F (c∗1, λ2) ≥ G(c∗1, λ2),

namely,

b
(

1 +
c∗2
1

τ

2

)n+1 ≥ a− r +
c∗21
4
,

b

(1 + c∗21 τ)
n+1 ≥ a− r.
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This is equivalent to

c∗21 ≤ 4











b
(

1 +
c∗21 τ

2

)n+1 − (a− r)











≤ 4(r + b− a), (29)

c∗21 ≤ 1

τ

(

(

b

a− r

)
1

n+1

− 1

)

,

which immediately imply the boundedness of c∗1 in (24):

0 ≤ c∗1 ≤ min







2
√
r + b− a,

√

√

√

√

1

τ

(

(

b

a− r

)
1

n+1

− 1

)







.

(ii) To prove (25) as τ → 0+, let

c∗0 = lim
τ→0+

c∗1,

and

λ∗0 = lim
τ→0+

λ∗.

Since c∗1 and λ∗ are bounded by

0 ≤ c∗1 ≤ 2
√
r + b− a,

0 < λ∗ < λ3,

respectively, and λ3 is bounded by

λ3 =
c∗1 +

√

c∗21 + 4(a− r)

2

≤ 2
√
r + b− a+

√

4(r + b − a) + 4(a− r)

2

=
√
r + b − a+

√
b,

then c∗0 and λ∗0 are also bounded. Thus,

lim
τ→0+

1

(1 + λ∗c∗1τ)
n+1

=
1

(1 + λ∗0 · c∗0 · 0)n+1
= 1. (30)

Noting that (c∗1, λ
∗) satisfies the equations in Lemma 4(i), we have,

b

(1 + λ∗c∗1τ)
n+1

= c∗1λ
∗ + (a− r)− λ∗2, (31)

− (n+ 1)bc∗1τ

(1 + λ∗c∗1τ)
n+2

= c∗1 − 2λ∗. (32)
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Taking limits of the above equations as τ → 0+, and applying (30), we have

b = c∗0λ
∗

0 + (a− r) − λ∗20 ,

0 = c∗0 − 2λ∗0,

which gives

λ∗0 =
c∗0
2
,

c∗0 = 2
√
r + b− a,

i.e.,

lim
τ→0+

c∗1 = 2
√
r + b− a.

This completes the proof of (25).
Now, we are going to prove the asymptotic behavior (26) as τ → +∞.

From

0 ≤ c∗1 ≤

√

√

√

√

1

τ

(

(

b

a− r

)
1

n+1

− 1

)

,

we have

c∗1 = O(τ−α) → 0

as τ → +∞, with α ≥ 1

2
. In what follows, we shall determine that α = 1.

From (31), (32), we can obtain

− (n+ 1)c∗1τ

1 + λ∗c∗1τ
(c∗1λ

∗ + (a− r) − λ∗2) = c∗1 − 2λ∗,

which can be solved in λ∗ as

λ∗ =
(n+ 2)c∗1
2(n+ 3)

− 1

(n+ 3)c∗1τ

+
1

2

√

(

(n+ 2)c∗1
n+ 3

− 2

(n+ 3)c∗1τ

)2

+
4(n+ 1)(a− r)

n+ 3
+

4

(n+ 3)τ
.

Note that c∗1 = O(τ−α) as τ → +∞. Then the above equation for λ∗ is
reduced to

λ∗ ≈ O(τ−α)−O(τ−(1−α))

+
1

2

√

[

O(τ−α)−O(τ−(1−α))
]2

+
4(n+ 1)(a− r)

n+ 3
+

4

(n+ 3)τ

≈ O(1) for α = 1, or
O(τα−1) for α > 1, or
O(1) for 1/2 ≤ α < 1, as τ → +∞.
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It is also verified that

c∗1τ ≈ O(1) for α = 1, or
O(τ−(α−1)) for α > 1, or
O(τ1−α) for 1/2 ≤ α < 1, as τ → +∞,

and
λ∗c∗1τ ≈ O(1) for α = 1, or

O(1) for α > 1, or
O(τ1−α) for 1/2 ≤ α < 1, as τ → +∞.

Now, when α > 1, letting τ → +∞ and applying the above equations to
(32), we obtain

∣

∣

∣

∣

(n+ 1)bc∗1τ

(1 + λ∗c∗1τ)
n+2

∣

∣

∣

∣

≈ O(τ−(α−1)) → 0, as τ → +∞,

and

|c∗1 − 2λ∗| ≈ O(τα−1) → +∞, as τ → +∞.

This implies that (32) does not match the order of τ for both the left and
right hand sides, so we can not have α > 1.

Similarly, if 1/2 ≤ α < 1, then
∣

∣

∣

∣

(n+ 1)bc∗1τ

(1 + λ∗c∗1τ)
n+2

∣

∣

∣

∣

≈ O(τ−(1−α)(n+1)) → 0, as τ → +∞,

and

|c∗1 − 2λ∗| ≈ O(1), as τ → +∞.

This also shows that the orders of τ as τ → +∞ in both the left and right
hand sides of (32) do not match. So, we can not allow 1/2 ≤ α < 1.
Therefore, it follows that the unique possibility for α is α = 1.

From the discussion above, we obtain c∗1 = O(τ−1) and λ∗ = O(1) as
τ → +∞. Let us assume

lim
τ→+∞

∣

∣

∣

∣

c∗1 −
A

τ

∣

∣

∣

∣

= 0,

lim
τ→+∞

λ∗ = C,

for some positive constants A and C. Now, we are going to determine A
and C.

As τ → +∞, taking limits of (31), (32), and using lim
τ→+∞

c∗1τ = A,

lim
τ→+∞

λ∗ = C, we obtain

b

(1 +AC)n+1
= (a− r) − C2,

− (n+ 1)bA

(1 +AC)n+2
= −2C.
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Solving the above equations gives

C =
−1 +

√

1 + (n+ 1)(n+ 3)(a− r)A2

(n+ 3)A
,

and A is given by






(n+ 1)(n+ 3)bA2 = 2B
(

1 + B
n+3

)n+2

,

B =
√

1 + (n+ 1)(n+ 3)(a− r)A2 − 1.

(2) If a = r, the proof is similar to (1). From (29)–(31), we obtain

0 ≤ c∗1 ≤ 2
√
b,

and
lim

τ→0+
c∗1 = 2

√
b.

(3) If a < r, the proof is also similar to (1). From (29)–(31), we obtain

0 ≤ c∗1 ≤ 2
√
r + b − a,

and
lim

τ→0+
c∗1 = 2

√
r + b− a.

Since G(c∗, λ1) = a− r +
c∗21
4
> 0, we have

c∗1 > 2
√
r − a.

The proof is completed.

Remark 15. Asymptotics (25) implies that c∗1 = 2
√
r + b− a is the criti-

cal wave speed for the corresponding reaction-diffusion equation (8) without
time delay (i.e., τ = 0).

Similarly, we have the following theorem.

Theorem 16. Consider Eq. (16).
(1) If a > r, then the critical wave speed c∗2 satisfies:

(i) Upper and lower bounds of c∗2:

0 ≤ c∗2 ≤ min

{

2
√
r + b− a,

√

1

τ
E

}

, (33)

where the positive constant E is given by

E =
b− 2(a− r) +

√

(b− 2(a− r))2 + 8(a− r)(r + b− a)

2(a− r)
. (34)

(ii) Asymptotic behavior of c∗2 with respect to the time delay τ :
Let τ be free, and the other parameters a, b, r be fixed, then

lim
τ→0+

c∗2 = 2
√
r + b− a. (35)
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(2) If a = r, then the critical wave speed c∗2 satisfies:

0 ≤ c∗2 ≤ 2
√
b,

and

lim
τ→0+

c∗2 = 2
√
b.

(3)If a < r, then the critical wave speed c∗2 satisfies:

2
√
r − a < c∗2 ≤ 2

√
r + b− a,

and

lim
τ→0+

c∗2 = 2
√
r + b− a.

Proof. The proof is similar to that of Theorem 14, so we omit the details
here.
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