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This paper is devoted to the study of an n-dimensional delayed system with nonlocal
diffusion and mixed quasimonotonicity. By developing a new definition of upper—lower
solutions and a new cross iteration scheme, we establish some existence results of trav-
eling wave solutions. These results are applied to a nonlocal diffusion model which takes
the four-species Lotka—Volterra model as its special case.
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1. Introduction

The theory of traveling wave solutions has attracted much attention due to its
significant nature in biology, chemistry, epidemiology and physics (see, e.g. [16,
18, 6, 2, 1, 5, 10, 21, 24]). Schaaf [15] systematically studied two scalar reaction—
diffusion equations with a single discrete delay for the so-called Huxley nonlinearity
as well as Fisher nonlinearity by using the phase space analysis, the maximum
principle for parabolic functional differential equations and the general theory for
ordinary functional differential equations.
As a classical model in describing the spatial-temporal pattern, the delayed
reaction—diffusion system
Ou(x,t) D82u(x,t)
ot 0x?
has attracted much attention, where u(z,t) € R™ and D is a diagonal matrix
of diffusion coefficients. Wu and Zou [19] established some existence results of
traveling wave solutions for (1.1) by using upper—lower solutions and monotone

+ f(ue(z)), z€R, >0 (1.1)
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iteration technique when the nonlinearity f satisfies the so-called quasimonotone
(QM) condition or the exponential quasimonotone (QM*) condition. Ma [9] proved
the existence of traveling wave solutions for (1.1) by using the Schauder’s fixed
point theorem under the assumption that the nonlinearity f satisfies (QM) condi-
tion. Since Ma [9] only considered delayed system with (QM) reaction terms, Huang
and Zou [4] extended the results of Ma [9] to a class of delayed system with (QM*)
reaction terms.

Murray [11] pointed out that the general reaction—diffusion system (1.1) has
some shortcoming for modeling, in some cases, such as ecological and epidemiologi-
cal models with spatial diffusion. One way to deal with these problems is to replace
the term (9%u(x.))/(922) with

(7 u)ant) = ule,t) = [ I~ uly. Oy - ulz.)
R

where J(z) is an even and nonnegative function with [ J(x)dz = 1. Recently, Pan

et al. [12, 13] considered the traveling wavefronts of the following delayed nonlocal

diffusion system

Ou;(x,t
% = d;|(J; *w;)(x, t) — ui(x, t)] + fi(us(x)),
TER, >0, i=1,...,n, (1.2)
where the nonlinear reaction terms f;(i = 1,...,n) satisfy the (QM) condition or

the (QM*) condition.

It is quite common that the reaction terms in a virtual model may satisfy nei-
ther the (QM) condition nor the (QM*) condition, such as type-K Lotka—Volterra
systems. There are many research works on the generalization of quasimonotonic-
ity condition for two-dimensional delayed reaction—diffusion systems and a few for
three-dimensional systems (see, e.g. [23, 25, 3, 17, 7, 22]). Wang and Zhou [8] con-
sidered the n-dimensional delayed reaction—diffusion system

Ouq (o, t 0%y (z,t
ma(f : =di ualg ) + filu (@t —=1), - un (@, t = Tin)),
. (1.3)
Oup(x,t) Pup(x,t)
o = I+ falwa (@t = ) un (@ = Tan)),

where d; > 0, 7;; > 0 denote the time delay and f; € C(R",R), 4,5 = 1,...,n.
By using the Schauder’s fixed point theorem, they obtained some existence results
of traveling wave solutions if the nonlinearity terms f;(i = 1,...,n) satisfy the
mixed quasimonotone (MQM) condition or the exponential mixed quasimonotone
(MQM*) condition and the following two conditions:

(A1) f;(0,...,0) = fi(k1,...,k,) =0, k; is a positive constant, i = 1,...,n;
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(A2) There exist n positive constants Ly, ..., L, such that
‘fl(q))—fl(‘l/” SLZH(I)—\I/||7 izl,...,n

for ® = (¢1,...,0n), ¥ = (W1,...,%,) € C([-7,0,R") with 0 <
@i(8),0i(s) < M;, s € [-7,0], M; > k; is a positive constant, i = 1,...,n.
Here 7 £ max{7;; |1 <i,j <n}.

In [8] the condition (A2) plays an important role in proving the existence of
traveling wave solutions. Thus, it is natural to ask whether a general reaction term
f=1(f1,.-., fn) which does not satisfy the condition (A2) could lead to analogous
conclusions. Pan [14] replaced (A2) with a weaker condition:

(A3) |f(®)— f(¥) = 0as ||®P—T| — 0, for ®=(¢1,...,00), V= (1,...,0n) €
C([—7,0],R™) with 0 < ¢;(s),1:(s) < M;, s € [-7,0], M; > k; is a positive
constant, i = 1,...,n. Here 7 £ max{r;; | 1 <4,7 < n}.

By a simple iteration process, she proved the existence of traveling wave solu-
tions for a two-dimensional model. Similarly, for a three-dimensional nonlocal dif-
fusion model satisfying (A1) and (A3), Xu and Weng [20] proved the existence of
traveling waves.

In the present paper, we consider the following n-dimensional nonlocal diffusion
system with time delays:

Ouq(x,t

D) _ (e w) 1) — ]+ uom, (@), 0 (),

: (1.4)

Qup(x,t

% = dn[(‘]n * Un)(x,t) - Un(l’,t)} + fn(ult(x)7 e aunt(x))a
where t,z € R, d; > 0, (Jixus)(z,t) = [ Ji(x—y)ui(y, t)dy, fi : C([-7,0;R") - R
is continuous and satisfies the (MQM*) condition which will be specified later,
i=1,...,n,u;(x) is an element in C([—7,0]; R) parametrized by = € R and given

by
i, (2)(s) = ui(z, t+s), se[-7,0, i=1,...,n.

For convenience, we give the following hypotheses about f;, J; of (1.4) and all of
them will be imposed throughout this paper.

(H1) fl(() 0) = fi(k1, ..., kn) =0, k; is a positive constant, i = 1,...,n, where
a: [T, O} — R is the constant function with value u for all s € [—7,0].

(H2) Let f=(f1,---,fn), || denote the Euclidean norm in R™ and || -| denote

the supremum norm in C([—7, 0], R™). |f(®)— f(¥)] — 0 as ||P—T|| — 0, for

D = (b1, s 6n), U = (Y., ) € C([=r, 0L, R") with 0 < 5(s), 1(s) <

M;, s € [-7,0], M; > k; is a positive constant, i = 1,...,n.
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(H3) Ji(xz) is an even and nonnegative function with [, Ji(z)dz = 1,
Jr Ji(z)e ™ dr < oo for any A > 0,7 =1,...,n.

The rest of this paper is organized as follows. In Sec. 2, we reduce the existence of
traveling wave solutions to the existence of fixed points of an operator. In Sec. 3, by
the application of a new cross iteration scheme, we prove the existence of traveling
wave solutions for the system (1.4) when the reaction terms satisfy the (MQM*)
condition. In Sec. 4, we apply our main results to a four-dimensional delayed type-K
Lotka—Volterra nonlocal diffusion system and prove the existence of traveling wave
solutions.

2. Preliminaries

Throughout this paper, we employ the usual notations for the standard ordering in
R™. That is, for u = (u1,...,u,) and v = (v1,...,v,), we denote u < v if u; < v;,
i=1,...nyu<vifu<vbutu#v;andu << vifu<vbutwu #v,i=1,...,n.

A traveling wave solution of (1.4) is a special translation invariant solution of the
form ui(z,t) = o1(z +ct), ..., un(z,t) = pp(x + ct), where p1,..., 0, € C1(R,R)
are the profiles of the wave that propagates through the one-dimensional spatial
domain at a constant speed ¢ > 0. Substituting u;(z,t) = p1(z+ct), ..., up(z,t) =
@n(x + ct) into (1.4) and denoting x + ¢t by £, we find that (1.4) has a traveling
wave solution if and only if the following wave equations

di[(J1 % ¢1)(&) — p1(§)] — e (&) + fT(p1e,- ) = 0,

: (2.1)
dn[(Jn % on)(§) = @n(E)] = con (&) + fr(P1e -5 Pne) =0
with asymptotic boundary conditions
lim (&) =¢ix, i=1,...,n (2.2)

E—to0
have a solution (p1(&),...,on(§)) on R, where f¢: C([—cr,0],R") — R is given by
ff(@ly s v@ng) = fi(soiy s 790%5)7
05 (s) = pic(cs) = i(§ +es), se[-7,0], i=1,...,n,

(p1—, ...y on—) and (@14, ..., ¢nt+) are two equilibria of (2.1). Without loss of gen-

erality, we let (¢1—,...,¢on—) = (0,...,0) and (p14,...,0ny) = (k1,...,kn). The
boundary conditions (2.2) become

lim i :0, lim i :ki7 z':l,...,n. 2.3

Jm¢i(€) Jim¢i(€) (2.3)

For M = (My,...,M,), M; > k; is a positive constant, i = 1,...,n, let

C[OvM](R’Rn) = {(9017ag0n) € C(R’Rn) :0 S @l(f) S M’HZ = 1a"'7na§ € R}
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For (¢1,...,¢n) € Ciom(R,R") and constants §; > 0, i = 1,...,n, define
H = (Hy,...,Hn) : Com(R,R") — C(R,R") by

Hi(p1,- - 0n)(€) = di(Ji x 9:)(§) + (B — di)pi(€)
+ (01 ne), i=1,...,n. (2.4)
Equation (2.1) can be rewritten as
o (&) = =Brpr(§) + Hilpr, - - - 0n)(6),
: (2.5)
o (§) = =Bnen(§) + Hn(o1, -, ¢n)(6)-
Define F = (F, ..., F,) : Cio (R, R") — C(R,R") by

1 o [ ai .
F’L(@laa@n)(f)zze CE/v €c H’L(<)017790n)(3)d3’ 7’:1’"'7’”“' (26)

Then it is clear that a fixed point of F is a traveling wave solution of (1.4) connecting
0=(0,...,0) with K = (k1,...,k,) if it satisfies (2.3).

3. Main Results

In this section, we consider the nonlocal diffusion system (1.4) with the following
exponential mixed quasimonotonicity reaction terms:

(MQM*) There exist n positive constants f1,. .., 3, such that for i =1,... &k and
j=k+1,...,n,

fi(@r, oy bn) = fildn, ooy Vhy Q1,5 Pn) +

fi(@rse ooy dn) — fi(P1se ooy Phs Yhgrs oo Pn) <0,

fi(or, - on) = fi(d1, o Oy Yirr, - n) + (B — d5)(95(0) — ¢;(0)) > 0,
Fi(@1,e o 0n) = [ (W1, sk, Phgrs oo d0) <0

for & = (¢1,...,6n), ¥ = (¢1,...,¢n) € C([-7,0],R")

(1) 0 <ahi(s) < gu(s) <My, se[-7,0, I=1,....m

{(ii) e?5[¢1(s) — 1i(s)] is nondecreasing in s € [-7,0], [=1,...,n.

(Bi — di)(¢i(0) — ¢:(0)) > 0,
0
(

First, we give a lemma on the operators H and F'.

Lemma 3.1. Assume that (MQM*) holds. Then
Hi(p1, -y by Vrgrs - ¥0n)(€) 2 Hi(hrs - ks Pr1s -5 ) (),
Hj(@1, s Oy g1y - ¥n)(§) < Hj(n, oo ¥k, §regry -5 00 (8),

and
Fi(ébl’-~-,¢k7¢k+17~-~’¢n)(f) 2 Fi(qpl?'"a¢ka¢k+17"'7¢n)(§)7
Fj(d)la"'7¢k7¢k’+17""¢n)(£) S Fj(wlﬂ""¢k7¢k+17"'a¢n)(£)a
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for ® = (¢1,....0n), ¥ = (U1,...,1,) € C(R,R™) with
(0S¥ <D<M;
{(ii) P (€) — i (€)] is nondecreasing in € €R, 1 =1,...,n,
wherei=1,....,k and j =k +1,...,n.

Proof. By (MQM*) and the definition of operator H, for i = 1,...,k and j =
k+1,...,n, we have

Hi(o1, .- O i1, - - 0n)(§) — Hi(Yr, o, Yks Ghg1s - - -, &) (€)
= d;(Ji * (¢ — ¥i))(§) + (B — di) (i (§) — ¥i(§))
F i (D1es s Phes Yrottes -3 Vne) — Fi(W1es - Ykes Protres -+ Pne)
> (Bi — di)(0i (&) = Yi(€)) + fi(P1er s Pne) = [i(W1es ooy ke s Phtics - -+ > Pre)
1 (Pres ooy Phes Vhtrer s ¥ne) — i (P1es - Pne)
>0,
Hj(1, ..o Oy rtas - 0n)(€) — Hy(Y1, o Wk, Gty - -, 0n)(8)
=d;(Jj = (5 — 0;))(§) + (85 — d;j)(¥;(§) — $;(8))
F 17 (Dres s Py Vhtrer s Une) = 7 (1es s ke, Prities -+ D)
< (B —dj) (Wi (§) — 05 (8)) + £ (D1es -+ s Phes Ykt 1er -+ Une) — [5(P1es vy b))
+ [ (D1e o ne) = F5(W1es s Ve Phties -+ o s D)
<0.
From the definition of F} in (2.6), the rest of the lemma is obvious, 0
Now, we are in a position to give the new definition of a pair of upper and lower
solutions of (2.1).

Definition 3.2. A pair of continuous functions ®(¢) = (@,(¢),...,%,(£)) and
2(&) = (¢,(§),..-, ¢, (£)) are called an upper solution and a lower solution of
(2.1), respectively, if ®(¢), ®(£) are differentiable on R\ Y and satisfy

C@;(f) - dl[(']l *@z)(g) —@(f)} - ff(@lg?' : "¢k5’£k+1£’ tee afns) > O,
C@;(f) _dj[(‘]j *@])(5) —@(5)} - fjc(flfﬁ"'7£k5’¢k’+1§7"'7¢n5) > 07 (3 1)
cf;(f) - dz[(Ji *fl)(f) _fl(g)} - fic(flgv‘ . ‘7£k57¢k+157 cee 7@715) < 07 '

) )

Cf/,(f _dJ[(JJ *Q. (f) _2(6)} _fj’c(¢157~~.7¢k57£k+1£7"‘7£n5) S 07
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for¢ e R\Y,i=1,....,kand j=k+1,...,n, where T = {£1,&,...,& } is a finite
set of points with £ < & < -+ < &,

In what follows, we assume that there exist an upper solution ®(¢) =

(®1(8),---,®n(§)) and a lower solution ®(£) = (¢,(§),..., ¢, (£)) of (2.1) satis-
fying the following properties

(P1) 0 <D <T(O <M.£c R, B
(P2) lime, oo (&) = 0, limg oo (&) = lime 100 D(§) = K,
(P3) ePié[p,(¢) — ©,(€)] is nondecreasing in § € R, [ = 1,...,n.

Define the following profile set:
(i) 2(6) < @(€) < D(6), £ ER
I'= 0@ e Clon(R,R): (it) eM[5(€) — @u(€)] and e[ (€) — ¢,(€)]
are nondecreasingin { e R, [ =1,...,n

Clearly, ® € T', @ € ' by (P1) and (P3). Now we start the iteration scheme with ®
and @. Define

m —(m—1 —(m—1 m—1 m—
SO'E )(§ :F’L(%pg )aa§0§c )7£§g+1 )aaggl 1))(5)7

—(m m— m—1) _(m—1 —(m—1
7€) = Fi(em D, o B ),

m m— m—1) —(m—1 —(m—1
e™(€) = Fi(e{m 0, ot Vi VL)),
)(€)

£)y- B (E)) = (71(E),- -, ),
3 7"'7220)(6)) = (91(6)77£n(§))»

where £ e R, i =1,....kand j = k+1,...,n;, m = 1,2.... Then we have the
following result.

)
)
)

e E) = @, o el e (E),
)
)

Lemma 3.3. Assume that (MQM*) holds. If ¢ > 1, then the functions 3™ ) =

@), P and 8 (E) = (), £0(E)) (m=1,2,...) defined
by (3.2) satisfy the following:

m— m —(m —(m—1
() 2 0(g) < 2™ (9) <) < T (o)
i) 3™ e, ™ eT;

(iii) <I>(m (&) and @™ (&) are upper and lower solutions of (2.1), respectively.

Proof. We first show that the conclusion is true for m = 1. Since ®(£) and ®(¢)
are upper and lower solutions of (2.1), respectively, for i = 1,...,k, we have

Hi(f]} s 7£k7¢k’+17 s a@n)(g)
= fic(flfﬁ s a£k£7¢k’+1§’ s 7¢n5) + (ﬁl - dl)f,b(g) + dl(J’L *fl)(g)

> cpi(§) + Bip,(§), for £ € R\T.
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Let £ = —oo and &1 = +o00; then for {1 < § < & with¢=1,2,...,r +1,
we have

fgl)(é') = Fi(£17 A ,£k7¢k+17 cee 7@71)(5)

1 ,&g ¢ &s %) [}
_ - g 3 ¢ H(<p17...,(,Ok7<,0k+17~~-7§0n)(3)d3

Tt /: /E (5) + g (5))ds

= (§), for{ eR\T.

T

Y

By the continuity of £§1)(§) and @ (), we get that ¢ (§) < ggl)(f) for £ € R.
Similarly, we can show that

(©,6), -, 9, (6) < (@V(E), ., M),

T

@(©), - BE) < (B1(6), - -, Bul€))

for £ € R. By Lemma 3.1, it is easy to see that

(D(©),...,e1(€) < @ (©), ... 7P (©)

for £ € R. This completes the proof of (i) for m = 1.
Now we prove the conclusion (i) for m = 1. Firstly, (i) indicates that &) (¢) <

P(g) < 3 (€),¢ € R. Now, noting the fact that

3 B
/ e=®[cd’(s) + Bp(s)]ds
forany ¢, 3 € R, ¢ € C(R,R), we have from a direct calculation that fori = 1,... k

e[V (€) — ¢,(6)]

1

1 B8; £ g
= —e(ﬁi_T)E/ e *[e[pM] (5) + BipM (5) — (el (s) + B, ())]ds

C

1 g8y [& iy _ _
= Lot >5/ e [elo DY (5) + gV (5) = Hil@y- -0 Prosts - Pa)(5)

c oo i

— (eg;(s) + Big,(s) = Hi(py, - £, Prgrs -+ Pn)(5))lds

1 _Bi ¢ Big _ _
= el 6)5/ e el (s) + Big, () — Hi(@, -0, Brirs-- - Pn)(8)]ds
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and
A s (1)
400 - 2,0
— _1<gl _ @) o(Bi—Eh)¢
c c

§ 8
></ e < *[egi(s) + Big,(s) = Hi(@,s- -+ @pr Prr1s-- - Pn)(8)]ds

T

1 e _ _
= =" leg () + Big, (§) = Hilgy -+ @40 Prrrs - Pu) (€]
>0 ife>1.

Similarly, we can show that 6(1)(5 ) and @Y (€) satisfy (ii) of I'. This completes the
proof of (ii) for m = 1.

Now we prove the conclusion (iii) for m = 1. In fact, we have from (i) and
Lemma 3.1 that for i =1,...,k,

g1 (€) = dillJi + eM)(E) - eV (O)] - FE@D, -, o0 B P

')

= clp)(€) + B (&) — Hi(eW, ..., 51, 5 1)(€)

S C[f,fl)]l(f) + ﬁlfil) (f) - Hi(f]_? R afka¢k+lﬂ s a@n)(f)
=0 foréeR.

In a similar way, we can get that fori=1,....,kand j=k+1,...,n,
e—(1 _(1 1
(€)= di{(J; * oME) = DO = F@L, - B Pl - ) <0,

@ V1€ - dil(J +B)E) — BV O] - £ @B e D) > 0,

13
@5 1(©) — il +25NE) — B O = £D, ok Bt - PRe) 2 0.

By the above argument, we know that the conclusion of Lemma 3.3 is true for
m = 1. Suppose the conclusion is true for m = p. Then by induction, it is easy to
see that the conclusion holds for m = p+ 1. Therefore, the conclusion holds for any
positive integer m. The proof is completed. O

Lemma 3.4. There exist ® = (F,...,05) €D, & = (¢7s---,¢7) €T such that
lim 376 =F (), lim 20" (g) = (&),

and the convergence is uniform with respect to the supremum norm.

Proof. Note that I' is a closed set with respect to the supremum norm in C'(R, R™).

(m)

By the monotonicity and boundedness of ®~ and @™ there exist continuous
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functions & = (@%,...,75) €I, &* = (¢7:---,¢") € I' such that

lim 276 =279,  lim &(¢) = 27(8),
and the convergence is pointwise. We now prove that the convergence is uniform in
e

By (P2) and Lemma 3.3, for any given € > 0, there exists 7' = T'(¢) > 0 such
that

—(m 3 —(m 3
sup [B () < 5, sup [ (6) - K| < ¢,
E<-T 2 e 2
sup |2(€)] < 5, sup |27V (€) ~ K| < 5
£E<-T 2 e 2

for all m € N, and this also implies that
—x% e =k €
sup | (&) < 5, sup|® (§) - K[ < 3,
E<-T 20 o 2
* € * €
sup [@7(¢)| < 5, sup|@(§) — K| < ;.
g<—T 2 e 2

Thus, for all m € N,

sup [37(6) ~ T (¢)] < <,
[>T

sup |2 (€) — 2*(€)] < e.
[>T

We now consider the sequences §(m)(§)|£€[,T,T}, g(m)(g)ke[,@ﬂ for m>1.

It s clear that 3" (©)leei_r.1), 2™ Olecrry, BV Oleci-ma), ) x
(§)|ec(-7,m, m > 1 are uniformly bounded. Then the uniform continuity implies

(m)

that there exist subsequences of 3 (©)leel—r, 1) and ) (§)|eci—7,7) which are
uniformly convergent with respect to the supremum norm of space C([-T,T],R")
according to the Ascoli-Arzela lemma. Combining this with the monotonicity of
3 Oleci—r,17> o) (§)|eci—7,7) With respect to m, there exists a positive integer
N* such that

sup [ (¢) —B(9)] < e,
Ee[—T,T]

sup |2 (&) — @7 ()| < €
£e[-T,T]

for all m > N*, which further indicates that
sup [ (§) — @ (§)] <e,
£ER

sup |2 (¢) — @ (§)] < ¢
£eR

for all m > N*. The proof is completed. O
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Now we state our main theorem.

Theorem 3.5. Assume that (H1)-(H3) and (MQM*) hold. If (2.1) has an upper

solution ®(€) = (@,(€),...,5,(£)) and a lower solution ®(&) = (¢, (&), (£)
satisfying (P1)—(P3), then (1.4) has at least a traveling wave solution satisfying (2.3)

for any ¢ > 1.

Proof. It is clear that

@10, Pr(€): 81,1 (€)s- - 7. (8))
= (F@1s P ey ) E)s e Fn(@1s - Pl g5 9,)(6))

(@565 2,(8): Phsa (), -+, PR (E))
= (F1(gys s 0 Prrts - PR Fn(@]s s 00 P+, P0) ()

for € € R by the Lebesgues dominated convergence theorem and (3.2).

Then (@T,...,@Z,fzﬂ,...,gp and (£T7...,£Z7¢,’§+17...,¢;) are two fixed
points of F, which also satisfy (2.1). Therefore, (P2) indicates that

@1(8), - Pk () 51 (€)o7 () and (©7(8), -+, 0;(8), Prya(§), -, ()
are two traveling wave solutions of (1.4), which may be the same. The proof is
completed. O

Corollary 3.6. Assume that ® = (¢1,...,9n) € ' is a traveling wave solution
of (1.4) satisfying (2.3). Then we have

PT(E) <D(E) <D (€), EER. (3.3)

Proof. Since ® = (¢1,...,¢n) € ' is a traveling wave solution of (1.4) satisfying
(2.3), we have

¢1(5)2F1(§017a<)&n)(§)7 Z:Lan

We obtain from Lemma 3.1 that

™€) < il€) <PI™(€), i=1,...,n, E€R, meN,

—1

which leads to (3.3). |

4. Applications

In this section, we shall apply our results to a specific model. Consider the exis-
tence of traveling wave solutions for four-species Lotka—Volterra nonlocal diffusion
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system
% =di[(J1 *ur)(z,t) —ui(z,t)] + rur (e, O)[1 — ayui (o, t — 711)
+ a12u2% (x,t —T12) — a13u§ (z,t —T13) — 014%% (2.t — 714)],
W = da[(J2 * u2)(z,t) — ua(z,t)] + roua(x,t)[1 + aglu% (z,t —T91)
el = ) ~ o () — e -,
w = d3[(Js * uz)(x,t) — uz(z,t)] + ryus(z,t)[1 — a31u1% (.t —731)
_ a32u2% (x,t — T32) — assus(x,t — 733) + a34u4% (,t — 30)],
W = dy[(Jy * ug)(x,t) — ug(z, t)] + raug(z, t)[1 — a41u1% (z,t — T41)
_ a42u2% (2,t — T42) + a43u§ (2.t — T43) — asqua (@, t — Taa)],

where d; > 0, r; > 0, a;; > 0, 7;; > 0 denote the time delay, J; : R — R satisfies
(H3), i,j = 1,2,3,4. We are interested in the co-existence of species, so we require
that the coefficients a;; (i,7 = 1,2,3,4) be given such that (4.1) has a positive
equilibrium (k1, k2, k3, k4). By normalization, we now assume that
1—a11 + a2 — a3 —ayy =0,
1+ a2 —ag —azs —a =0,
(4.2)
1—as1 —ase —asz + asg =0,
1 — a4 — aso + asz —asa =0,
such that (ki1, ke, k3, ks) = (1,1,1,1) is a positive equilibrium of (4.1). In particular,
we also assume that
aig > Y ay, i=1,2,34. (4.3)
1<j<4,j#i

We shall investigate the traveling wave solutions connecting (0,0,0,0) and
(1,1,1,1). Clearly, the wave equations corresponding to (4.1) are

cp1(§) = da[(J1 x p1)(§) — p1(§)] + r1p1(§)[L — anrepr (€ — cm11)
+ a2 (€ — eria) — 013%% (€ — emis) — ara2 (€ — ema)],
(&) = dal(J2 * 22)(€) = @2(€)] + raa(€)[1 + azp} (€ — cran)
— anapa(€ — e720) — a3 (€ — c7a3) — 424} (€ — cmaa)],
P () = dal(Js +25)(€) — w5 (€)] + raa()[1 — as i (€ — eran)
— 3203 (€ — c732) — azas(€ — e733) + 434 (€ — cmaa)],
edy(€) = dal(Ja * pa)(€) — a(€)] + rapa(E)[L — anp? (€ — cran)

1 1
— g2 (§ — cTa2) + sz (§ — cTa3) — aaapa(§ — cTaq)].
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Let 7 = maxy<; j<4{7i;}. For any (¢1,¢2, 3, ¢4) € C([—7,0],R*), denote
f1(p1, @2, 3, ¢4)
= r1p1(0)[1 — ar11(—m11) + a12<p2%(—7'12) - alS‘Pé(_ﬁS) - a14<pf(—7'14)],
Ja(@1, 02, 93, 04)
— rapa(0)[L + az0f (—7a1) — azapa(—72) — aapd (—Tas) — azapF (—720)],
f3(p1, 02, 93, pa)
,

1 1 1
= r303(0)[1 — az197 (—731) — az2p3 (—T32) — az3p3(—T33) + azap (—734)],

f4(<)017 ¥2, 3, @4)

1 1 1
= 1r404(0)[1 — 4107 (—Ta1) — 4205 (—Ta2) + 4393 (—Ta3) — Gaapa(—Taa)].
(4.5)

Clearly, f = (f1, f2, f3, fa) satisfies (H1)-(H2) for any M = (M;, Ma, M3, M) with
M; > 1,i=1,2,3, 4. Next, we verify that f = (f1, fa, f3, f4) satisfies (MQM*).

Lemma 4.1. If 7,1 = 1,2,3,4 are small enough, then f = (f1, f2, [3, fa) satisfies
(MQM*) defined in Sec. 3.

Proof. Let M = (M17M2,M3,M4) with Mi > ].ﬂ; = 1,273,47 and ﬂ1,527ﬂ37ﬂ4
are positive constants with

B1>di —ri(l— a13M3% - a14M4% — 2a11 M),
B2 > da —1a(1 — aggM% - a24M4% — 2a22Ms), (46)
B3 > ds —r3(1 —asi1 M? — aze M3 — 2a33Ms),
By > dy —ra(l — anM; — asMy — 2a44My).
Let ® = (¢1, d2, d3, d4), ¥ = (1,2, 13,%4) € C([—7,0], R*) satisfy the following:

(i) 0 <ay(s) < du(s) < My, s €[—T7,0],1=1,2,3,4;
(ii) e”*[¢i(s) — 1y(s)] is nondecreasing in s € [—7,0], 1 = 1,2,3,4.
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Then
f1(o1, 02, 3, 04) — f1(vh1, 2, 3, d4)
= 1161 (0)[1 — ar1ér (—711) + a1203 (—712) — a13¢3% (=713) — a1463 (—714)]
— ()L — anthr (1) + a129f (~112) — 01303 (~713) — 14} (—71a)]
= 71[61(0) ~ ¥1(0)] ~ r1a1393 (~71)[1.(0) — 61 (0)]
— 110103 (~712)[$1(0) — $1(0)] — r1a11 (61 (01 (—11) — 1 ()1 (—71)]
+r1a12[61 0083 (—112) = 1 (0)F (—712)]
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> 71 (1 - aisMy — awad)[61(0) — v1(0)]
—r1011[¢1(0)¢1 (=711) — ¥1(0)¢1 (=711) + ¥1(0)d1 (=711) — 11 (0)h1 (=711)]
>ri(1— C1131\/-’3% - a14M4% — a11M1)[¢1(0) — 41 (0)]
—r1a1191(0)[¢1(=711) — ¥1(=711)]
> (1 — a1sMy — a7 — an My — ay Mye® ™ )[¢(0) — 4 (0)].
By (4.6), if 711 is small, we have
By > dy — (1 — a13M — ayaMp — ay My — agy MyePim).
Thus,
f1(@1,d2, ¢35, 04) — fr(v1, Y2, 3, 4) + (B1 — di)[¢1(0) — ¢¥1(0)] > 0.
Furthermore,
f1(01, G2, B3, 04) — f1(d1, b2, 13, 104)
= r161(0)[1 — anidr(~711) + 126§ (~712) — a1365 (~713) — 126§ (~714)]

—r161(0)[1 — a1 (—m11) + a12¢2%(—712) - Cl1?ﬂ/)3%(—T13) - a141/J4%(—T14)]

<0.

By the above argument, we know that f; satisfies the (MQM*) condition. In
a similar way, we can show that fs, f5, f4 also satisfy the (MQM*) condition if
Tog, T33, T44 are small. The proof is completed. O

Now, we are in a position to construct an upper and a lower solution of (4.4).
Define functions

Al()\,C) =cA—d / J1(8)67A5d8 +d; — 7"1(1 + algMQ%),
R
1
3

AQ()\,C) =cA— dg/ J2(8)67A5d8+ do — 7"2(1 + aglMl ),
R

Ag()\,c) =cA— dg/ Jg(s)e_)‘sds +d3 — 7"3(1 + a34M4%),
R

Ay(N ¢) =ch— d4/ Ju(s)e ™ ds +dy —ra(1+ a43M3%).
R

It is easily seen that the following observations hold.
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Lemma 4.2. There exists ¢ > 0 such that

(i) if ¢ > ¢*, then the equation A;(\,¢) = 0 has two distinct positive roots Ai1(c),
/\1‘2(8) with 0 < /\1‘1(8) < /\1‘2(8), =1, 2,3,4;

(ii) if ¢ < ¢*, then at least one of the equations Aij(A,¢) = 0, Ag(N,¢) = 0,
As(X\, ¢) =0, Ag(A, ¢) =0 have no more than one real Toot.

Assume that ¢ > max{c*, 1}, for brief, we rewrite A\;1(c), Ai2(c) given in
Lemma 4.2 as A\j1, Ai2. In view of (4.3), there exist constants ¢; >0, j =0,1,...,8
such that e9,e4,¢6,68 < 1 and
a11€1 — @123 — A13E6 — A14E8 > €0,

(22€3 — (21€1 — (2366 — U24E8 > €0,
a33€5 — A31€2 — A32€4 — A34E7 > €0,

A44E7 — A41€2 — A42E4 — A43E5 > €0,

(4.7)
a11€2 — 1264 — A13€5 — A14€7 > €0,
22€4 — A21€2 — A23E5 — A24E7 > €0,
a33€6 — A31€1 — A32€3 — A34E8 > €0,
A44E8 — A41€1 — A42E3 — A43E6 > €0-
Using the above constants A;1, €5, 4 =1,2,3,4, 5 =1,...,8 and a small enough
A = A(¢), we define the following continuous functions:
07 f < 517 _ 6A11£7 g < 557
#, (&) = Y P1(6) = e
1_526 ) £>§1a 1—|—€16 ) £>§57
07 f < 527 _ 6A21£7 g < 567
?,(§) = Y Pa(6) = e
1_546 ) £>§2a 1+€3€ ) £>§67
07 f < 537 _ 6A31£7 g < 577
®,(§) = e P3(8) = ae
1_666 ) £>§3a 1+€5€ ) £>§77

O, f < 54’ . B €>\41£, f < 587
&(5) = {1 _5867,\5’ £> &, P4(§) = {1+€7e>\£’ &> &,

It is easy to see that 1 < supecp ©,(§) = M, 7;(§), p,(§) satisfy (P1)-(P3), i =
1,2,3,4, and min{&s, &6, &7, &} > max{&1,&a, &3, 8} + 7 for a small enough A > 0.
In fact, we have & = § Ineg; < 0fori =1,2,3,4,and & > 0 fori = 5,6, 7, 8. For any
given ¢ > 0, one can choose A = A(¢) > 0 small enough so that min{¢&s, &, &7, &3} >
max{€1, &, &5, €4} + 7. We shall show that B(€) = (7, (€), 7(€), 75(6), 74(6)) is an
upper solution of (4.4) and (&) = (¢, (£), 9, (£). ¢,(£). ¢,(&)) is a lower solution
of (4.4).
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Lemma 4.3. If A > 0 is small enough, then ®(&) = (3,(€),75(£), @5(€),4(€)) s

an upper solution of (4.4) and (§) = (¢, (£), ¢, (£), v,(£), »,(£)) is a lower solution
of (4.4).

Proof. For ¢ < &5, we have 3, (€) = e1¢ and
P1(€) — di[(J1 *B1)(€) — P1(E)] = PO — anPy (€ — cm)
T (e a1393 (€ — c713) — arag} (€ — c714))]
> L€ — di (D P (E) + 7y (€) — 1 (1 + a2 M3 )P (€)
> (e, — dy /R Ti(s)eM1%ds + dy — 11 (1 + ar2 M)

= €>\11£A1()\11 s C)
=0.

For &5 < € < &5 + c111, we have

7.(6) =1+4e1e7,
?1(& —erp) = erurEmem)
Po(E —cm2) <1+ 536—A(£—cr12)’
f3(§ —cng)=1- 566*/\(570713)7
@, (6 —cma) =1 —gge MEmema),

Thus,
1) — di[(J1 * B1)(€) = B1()] = POl — anBy (€ — emi1)
+ 012@% (€ —cm2) — amfé (€ — cris) — ara? (€ — c71a))]
> —cede M —dy /]R J1(8)(1 +e1e M) ds + dy (1 + e1e729)

_ 7«1(1 4 51€_>\§)(1 _ a116A11(55—cT11) + a12(1 + 536—>\(§—CT12))%

—a13(1 — gge METETID) 2 gy (1 — ggemNETCT)2)

Y

—cs e N — dlsle*/\g/ Jl(s)e/\sds +diere N — ri(l+ sle’/\g)
R

X (1 — ane_C)‘“T“ (1 + 616_)\55) + a12(1 + 636_)\(5_0712)

— a13(1 — 5667/\(5707—13)) — a14(1 — 5867/\(5707—14)))
= —ce1\o — dlslg/ Jl(s)e’\sds +dig1o—m1(1+¢€10)
R

x (1 — alle*C’\UT“(l + 5167)‘55) + a12(1 + £50eT12

)\CT13) Ac7'14))

—a13(1 — egpe —a14(1 — egpe

= Il (Aa Q)a
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where ¢ := e * € (0,e7*%) C (0,1) for ¢ € (&5,&5 + 1] and A > 0. Note
1 —ay1 + a2 —aiz — aig = 0. It follows from (4.7) that for any g € (0,1),

(0, 0) = =71 (1 + £10)(1 — ayre” M ™ 4 a19 — a3 — ayy
—apie1e” M 4 10830 + a13660 + a14€80)
> —r1(14e10)(a11(1 — e ™) — g g e M1
+ a12€3 + @136 + a14€8)
>0

for small enough 77. Therefore, there exists small enough A; > 0 such that
I (A 0) >0 for any A € (0,)1), 0 € (0,1).
For & > &5 4 cr11, we have B, (€ — cryy) = 1 4+ e1e” M=) and

@y (&) = di[(J1 1)) = P1(§)] — M P (1 — a1 (€ — e)

1
+a129;5 (§ — cm12) — a13£3% (§ —cmi3) — a14£f (& — cT14)]

Y

—cs e N — dlsle_AE/ Jl(s)e)‘sds +diere N — ri(l+ sle_AE)
R

X (1 — all(l + 5le—>\(§—c‘r11)) 4 a12(1 + 536—>\(§—c712))

_ a13(1 _ 56€—>\(§—CT13)) _ a14(1 _ 686—)\(5—07’14)))

= —ce1)\o — dlelg/ Jl(s)eksds + dic1o—r1(1 +€10)
R

A A A . A
X (—a11610€™™ + a12e30€” 2 + arzege” T + argegpe” M)

= 12()‘7 9)7
where o = e~ ¢ is defined as above. It follows from (4.7) that
I5(0,0) = —r1(1 + c10)0(—a11€1 + ar2e3 + a13€6 + a14€s) > 0.

Therefore, there exists small enough Ao > 0 such that Ix()\, 0) > 0 for any A €
(0,A2), 0 € (0,1). Let Ay = min{A1, A2}; then we have

@y (&) — di[(J1 % 31)() = P1(§)] — 1Py (O — a1, (€ — e1)

1
+a129;5 (§ — cm12) — a13£3% (§ —cmi3) — a14£% (& — cT14)]
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>0 for A€ (0,\).
Similarly, there exist ;\2, 5\3, 5\4 such that
Py(&) — dal(J2 * Pa) (&) — Po(§)] — 2P (E)[1 + an P} (€ — c7a1)
— a20P,(§ — cTa2) — azsfé (& —cmo3) — a24£% (& — cT24)]

>0 for Ae (0,\),
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cB4() — ds[(J3 * B3)(€) — Bs(€)] — 73P3(E)[1 — as1 3 (€ — cm31)
- a32£2% (& — cm32) — azsPs (€ — cT33) + %4@% (€ — cT34)]

>0 for e (0,)s),
BU(E) — dal(Ja * By)(€) — Ba(&)] — 4By (E)[1 — aurp? (€ — cman)

1 _3 —
— as292 (€ — cTa2) + a43P3 (€ — cTu3) — a24P4(§ — c7aa)]

>0 for A€ (0,\),

respectively.
By the above argument, we know that ®(&) = (3, (£), 82(£), P5(£), 2,(£)) is an
upper solution of (4.4) for a small enough A > 0.
Now we show that (£) = (¢, (£), ¢,(£), ¢,(£), ¢, (£)) is a lower solution of (4.4).
For & < &, we have fl(f) =0 and

e (&) — di[(J1* ) (&) — ¢, (E)] = 1, (1 — ang, (€ — cmi1)
+a12£2% (€ —cm2) — alz@é (€ —cm3) — 0414@4% (€ — cma)]
<0.

For & < € <& + cm11, we have

(&) =1—e2e AL
fl(f —cm11) =0,
P, (§—cTi2) = 1 —eqe Ag—ema)
B3(6 — em13) < 14 ege MEmema),
Bu(€ — em14) < 14 ereMEmema)

Thus,
e (&) — di[(J1* ) (€) — ¢, (&)] = r1p, (§[1 — anp, (€ — emi1)
1 1

+a12£2% (€ — cm2) — a1393 (§ — c713) — 145 (§ — cT14))]

< ceghe N — d1/ Ji(s)(1 — Ege_A(E_S))dS

R

+di(1—e2e8) — 1y (1 — 29 ) (1 + a1a(1 — egeME—eT2))2
— a13(1 + 6567/\(5*07'13))% - a14(1 + 8767)\(57”14))%)

< ceade M 4 dlfsge*)‘g/ Jl(s)e/\sds — diege ™ — ri(l — Ege*/\g)

R

x (14 ara(1 — e4eME70T12)) — g 5(1 + e5e ME—eT13))

— a14(1 + €7€_>\(£_CT14)))



Anal. Appl. 2015.13:23-43. Downloaded from www.worldscientific.com
by SOUTH CHINA UNIVERSITY OF TECHNOLOGY on 05/13/16. For personal use only.

Traveling wave solutions in n-dimensional nonlocal diffusion systems 41

= cea\o + dlezg/ Jl(s)eksds —dyegp —1r1(1 — €20)
R

X (a11 — 12640 — ay3e50e™T

= 13()‘7 Q)

— apge70e )

Note p = e *¢ and & = +1Iney. Thus g € (0,e7*1) = (0, %) It follows from (4.7)
that for o € (0, ),

) eq
I3(0,0) = —7r1(1 — €20)(a11 — a12640 — A13E50 — A14€70)
1
< -7 (6— - Q) (a1162 — @124 — a1365 — a1467) < 0.
2

Therefore, there exists small enough A3 > 0 such that I3(\, 0) < 0 for any A €
(07)‘3)7 o€ (0 ! )

=
For § > & + cri1, we have p (§ —cri1) =1— gpe~Mé—em1) and

e (&) = di[(J1* 9,)(&) — ¢, ()] =10, (E)[L — a1, (§ — eTi1)
+a12£§ (§ —cmi2) — am@:}% (§ —cm3) — al@% (§ — c14)]

S 662/\67)\5 + dlé‘gei/\g/ Jl(S)e/\st — d1€2€7A€ — ’/‘1(1 — 5267/\5)
R

X (1 —a11(1 — ege™Em1)) 4 g 9(1 — g4eMETeM2))

—a13(1 + e5e M) — (1 + erem METT)Y)

cea Mo + dlagg/ J1(s)eMds — diesp — 11 (1 — £90)
R

AcT12 AcTia) )

AcT ACT:
X (a11€20e™ ™ — ay12e40€ — a13e50e” " — ayse70e

=:I4(\ 0).

It follows from (4.7) that for o € (0, X),

) g
1,(0, 0) = —r1(1 — e20)0(a11€2 — a1264 — a1365 — a1467) < 0.

Therefore, there exists §mall enough Ay > 0 such that I4(\, ) < 0 for any \ €
(0,\4), 0 € (0, é) Let A5 = min{\3, A\4}; then we have

e’ (§) = di[(J1 * 9 )(€) — ¢, (&)] = r1p, (§)[1 — anp (€ — cmi1)
+a12£2% (§ —cmi2) — am@é (§ —cm3) — al@% (£ — c114)]

<0 for Ae (0,)s).
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Similarly, there exist X6, A7, \g such that
el (€) = dal(J2 * 9,)(€) = 2, ()] = P22, (€)1 + az 7 (€ — emn)

— a2, (§ — cT22) — 02553 (€ — cTas) — 24P (€ — c20)
<0 for e (0,N),
ey (§) — ds[(J3 * 9,)(€) — 9, (&)] — 3, (§)[1 — asl@% (€ —cri1)
- a32¢2% (€ — c732) — assp, (§ — cmi3) + a34£§ (€ — cT34)]

<0 for Ae (0,A7),

e (€) = da[(Js % 9,)(€) — 9,()] — ragp, (1 — an? (€ — crar)

1
— a42P3 (§ — cTa2) + a43£§ (€ — cu3) — aaap, (€ — cTad))]

<0 for e (0,s),

respectively.
By the above argument, we know that (&) = (¢,(£), , (), v, (§), ,(§)) is a
lower solution of (4.4) for a small enough A > 0. The proof is completed. O

As the direct consequence of Theorem 3.5, we have the following result.

Theorem 4.4. If 7;;, i = 1,2,3,4 are small enough, then for ¢ > max{c*, 1},

Eq. (4.1) admits a traveling wave solution ®(§) = (p1(&), v2(§), v3(&), va(§)) satis-
fying ®(—o0) = (0,0,0,0) and ®(4+o00) = (1,1,1,1).
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