Hydrate Phase Equilibrium of CH₄-Rich Binary and Ternary Gas Mixtures in the Presence of Tetra-ŋ-butyl Ammonium Bromide

Shuanshi Fan, ‡ Shali You, ‡ Yanhong Wang, ‡ Xuemei Lang, ‡ Chi Yu, ‡ Shenglong Wang, ‡ Zunzhao Li, ‡ Wentao Li, ‡ Yuanzhi Liu, ‡ and Zheng Zhou §

†Key Lab of Enhanced Heat Transfer and Energy Conservation Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
‡Sinopec Dalian Research Institute of Petroleum and Petrochemicals, Dalian, Liaoning 116045, China
§Sinopec Zhongyuan Oilfield branch, Puyang, Henan 457001, China

ABSTRACT: In this work, binary gas mixtures of 92 mol % CH₄/CO₂ and ternary gas mixtures of 87 mol % CH₄/5 mol % C₂H₆/CO₂ were studied to simulate associated petroleum gas. It mainly consists of two parts: one is the hydrate phase equilibrium of the binary and ternary gas mixtures both in water and 0.293 mol % tetra-ŋ-butyl ammonium bromide (TBAB) solution by isochoric pressure-search method, and the other is the enthalpy of hydrate dissociation calculated by the Clausius–Clapeyron equation. The hydrate phase equilibrium measured temperature ranged from 278.61 to 289.46 K and pressure from 2.12 to 10.06 MPa with 24 points in total. The results show that the hydrate phase equilibrium line of 87 mol % CH₄/5 mol % C₂H₆/CO₂ + water was shifted about 2.4 K toward the higher temperature compared to that of 92 mol % CH₄/CO₂ + water. After adding 0.293 mol % TBAB, it could be found that the hydrate phase equilibrium line of binary gas mixtures and ternary gas mixtures in 0.293 mol % TBAB(aq) were shifted about 5.3 and 2.7 K toward the higher temperature compared to that of water. Besides, the enthalpy of the hydrate dissociation in 0.293 mol % TBAB(aq) is much higher than that in water. Average enthalpy of hydrate dissociation of binary gas mixture hydrate increased from 62.46 kJ/mol in water to 160.21 kJ/mol in 0.0293 mol % TBAB(aq). Meanwhile the average enthalpy of hydrate dissociation of ternary gas mixture hydrate increased from 72.89 kJ/mol in water to 181.61 kJ/mol in 0.0293 mol % TBAB(aq).

1. INTRODUCTION

Gas hydrates are crystalline clathrate compounds, that are formed by host molecules (H₂O) and guest molecules (CH₄, CO₂, H₂, etc.) at high pressure and low temperature. Because guest molecules could be thermodynamically steady in clathrates, hydrate-based technology has been utilized in gas storage, sea water desalination, and gas separation. All these research studies required phase equilibrium data as the fundamental thermodynamic data. Associated petroleum gas (APG) is a high-caloric gas of variable composition and an important natural gas resource. Typical APG composition contains 80–90% methane, 5–10% ethane, 5–10% carbon dioxide, and others; APG needs to be purified before being used as an urban natural gas. Nowadays, conventional methods for separating CO₂ from associated petroleum gas include pressure swing adsorption, cryogenic separation, absorption, membrane separation, and hydrate-based separation. Although the hydrate-based technology is still some distance away from industrial applications, it has shown good development prospects with the trend of low energy consumption and environmental friendly technology.

In recent years, the use of quaternary ammonium salts (QASs) as an additive to separate gas mixtures has been one of the important research directions. Luo et al. reported hydrate phase equilibrium data of CH₄ + H₂ in the presence of TBAB, and the results showed that the addition of TBAB can dramatically reduce the pressure required for hydrate formation at a fixed temperature, and the thermodynamic promoting effect of TBAB was better than that of THF below 284 K. Sánchez-Mora et al. reported the hydrate phase equilibrium data of CO₂ + N₂ + tetra-butyl-ammonium fluoride (TBAF) + water system, the mass fractions of TBAF were 0.05 and 0.10, results show that TBAF could thermodynamically promote hydrate formation.

Our earlier work tested the phase equilibrium data of 67 mol % CH₄/CO₂ binary gas as simulated biogas and flue gas with various additives, such as tetrabutylammonium halide (bromide, chloride, or fluoride), tert-butyl peroxy-2-ethylhexanoate, 2-methyl-2-propanol, and 1,1-dichloro-1-fluoro-ethane. However, phase equilibrium data of associated...
petroleum gas remained unavailable, which limited the application of hydrate—base separation. In this work, the ternary gas 87 mol % CH₄/5 mol % C₂H₆/CO₂ and binary gas 92 mol % CH₄/CO₂ were studied as simulated associated petroleum gas. Hydrate phase equilibrium data of binary and ternary gases in water and 0.293 mol % tetra-n-butyl ammonium bromide (TBAB) solution were tested. The results could provide the fundamental thermodynamic data for hydrate-based associated petroleum gas separation.

2. EXPERIMENTAL SECTION

2.1. Materials. Table 1 presents the chemicals and materials used in this work. Concentration of tetra-n-butyl ammonium bromide (TBAB) solution was 0.293 mol %. The gas mixtures in this work were 92 mol % CH₄/CO₂ and 87 mol % CH₄/5 mol % C₂H₆/CO₂, which was used as simulated associated petroleum gas.

Table 1. Chemicals and Materials Used in This Work

<table>
<thead>
<tr>
<th>component</th>
<th>purity/mol %</th>
<th>supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>92 mol % CH₄/CO₂</td>
<td>99.99</td>
<td>Foshan KODI Gas Chemical Industry Co.</td>
</tr>
<tr>
<td>87 mol % CH₄/5 mol % C₂H₆/CO₂</td>
<td>99.99</td>
<td>Foshan KODI Gas Chemical Industry Co.</td>
</tr>
<tr>
<td>tetrabutylammonium bromide (TBAB)</td>
<td>99.0</td>
<td>Shanghai Aladdin Bio-Chem Technology Co.</td>
</tr>
<tr>
<td>water</td>
<td>deionized</td>
<td></td>
</tr>
</tbody>
</table>

2.2. Experimental Apparatus. Schematic of the experimental apparatus is shown in Figure 1, which described in detail in our previous works.²⁰,²¹ Briefly, the apparatus was made of a 300 cm² stirred high-pressure stainless steel vessel, a Huber CC2-K20B cooling bath circulator, and an Agilent 34970A data logger. Two thermocouples (PT100) and a pressure sensor (Senex DG-1300) were installed to monitor the temperature and pressure during the experiments with a resolution of ±0.1 K and ±0.01 MPa, respectively.

Experimental method of this work is a isochoric pressure search method, which was similar to our previous work.¹⁸⁻²² and literatures.²³⁻²⁴ First, high-pressure vessel was washed with deionized (DI) water. Then, about 200 mL of water or 0.293 mol % TBAB(aq) was added into the vessel. After that started data logger to record pressure and temperature of experiment system, vacuumed the vessel and injected gas to the required pressure. Magnetic stirring (roughly 600 rpm) and cooling bath circulation were started; then, the experiment system was kept at room temperature and ensured no gas was leaking. The system started to cool down at a rate of 3 K/h. An abrupt pressure drop meant hydrate formation; the system pressure was maintained for 3 h and then heated up at the rate of 0.1 K/h. The pressure change of hydrate dissociation line during experiments was monitored. There was a change in the heating rate to 0.025 K/h when the pressure drop of the hydrate formation line and hydrate dissociation line in the P−T curve was less than 0.5 MPa. The intersection points of the hydrate formation line and hydrate dissociation line in the P−T curve were considered as the hydrate phase equilibrium points.

2.3. Calculation of Enthalpy. The enthalpy of hydrate dissociation is one of the important parameters of hydrate stability. Currently, methods for measuring the enthalpy of hydrate dissociation are mainly differential scanning calorimetry (DSC)²⁵ and Clausius–Clapeyron equation.²⁶⁻²⁷ In this paper, the enthalpy of the hydrate dissociation for 92 mol % CH₄/CO₂ and 87 mol % CH₄/5 mol % C₂H₆/CO₂ in water and in 0.293 mol % TBAB(aq) is calculated with the Clausius–Clapeyron equation

\[
\frac{d(P)}{d(T)} = \frac{\Delta H_d}{zR}
\]

where \(P\) is the equilibrium pressure of gas hydrate; \(T\) is the equilibrium temperature of gas hydrate; \(\Delta H_d\) is the dissociation enthalpies of hydrate; \(z\) and \(R\) are the gas compressibility factor and the molar gas constant, respectively; and \(R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}\).

3. RESULTS AND DISCUSSION

3.1. Hydrate Phase Equilibrium Data. The results of hydrate phase equilibrium data of 92 mol % CH₄/CO₂ in water and 0.293 mol % TBAB(aq) are shown in Table 2 in the temperature range of 278.68−289.46 K and pressure range of 2.12−10.06 MPa with total of 11 points. Hydrate phase equilibrium data for different concentrations of CH₄/CO₂ in water are summarized in Figure 2. It can be seen in Figure 2 that the hydrate phase equilibrium line of 92 mol %
CH$_4$/CO$_2$ binary gas was slightly shifted toward higher temperature (about 0.4 K) compared to that of CH$_4$. The reason was that the addition of CO$_2$ thermodynamically promotes hydrate formation.

The results of hydrate phase equilibrium data of 92 mol % CH$_4$/CO$_2$ in 0.293 mol % TBAB solution are shown in Table 2 and Figure 3. Hydrate phase equilibrium data of CH$_4$ + 0.293 mol % TBAB(aq) and CO$_2$ + 0.293 mol % TBAB(aq) in Figure 3 were obtained from Mohammadi et al. and our previous work. In Figure 3, the hydrate phase equilibrium line of 92 mol % CH$_4$/CO$_2$ + 0.293 mol % TBAB(aq) significantly shifted about 5.3 K toward a higher temperature compared to that of 92 mol % CH$_4$/CO$_2$ + water. Meanwhile, it could be clearly seen that the hydrate phase equilibrium lines of 92 mol % CH$_4$/CO$_2$ + 0.293 mol % TBAB(aq), CH$_4$ + 0.293 mol % TBAB(aq), and CO$_2$ + 0.293 mol % TBAB(aq) almost coincide, which indicated that TBAB dominated the hydrate phase equilibrium rather than gas components. TBAB could form a semihydrate in water, which is much more thermodynamically easier than either CH$_4$ or CO$_2$. During gas hydrate formation in the TBAB solution, TBAB semihydrate may be formed earlier and easier than CH$_4$ CO$_2$ or 92 mol % CH$_4$/CO$_2$ binary gas. CH$_4$ or CO$_2$ molecules migrated into empty cages of the TBAB semihydrates, which leads to same thermodynamic conditions as those of the gas-forming hydrate in TBAB solutions.

The results of hydrate phase equilibrium data of 87 mol % CH$_4$/5 mol % C$_2$H$_6$/CO$_2$ in water and 0.293 mol % TBAB(aq) are shown in Table 3 and Figure 4 in the temperature range from 278.61 to 288.45 K and the pressure range from 2.79 to 8.73 MPa, with a total of 13 points. In Figure 4, hydrate phase equilibrium line of 87 mol % CH$_4$/5 mol % C$_2$H$_6$/CO$_2$ + water shifted about 2.4 K toward a higher temperature compared to 92 mol % CH$_4$/CO$_2$ + water. Formation of C$_2$H$_6$ hydrate is easier thermodynamically. During hydrate formation, C$_2$H$_6$ molecules could occupy the 512 cages of the semihydrate and help CO$_2$ and CH$_4$ molecules occupy 512 cages and 51262 cages, respectively. As a consequence, C$_2$H$_6$ acts as a thermodynamic promoter that shifts the hydrate phase equilibrium line toward a higher temperature in this work.

Figure 2 also shows that the hydrate phase equilibrium line of 87 mol % CH$_4$/5 mol % C$_2$H$_6$/CO$_2$ + 0.293 mol % TBAB(aq) was significantly shifted about 2.7 K toward a higher temperature compared to that of 87 mol % CH$_4$/5 mol % C$_2$H$_6$/CO$_2$ + water. Meanwhile, it could be clearly seen that the hydrate phase equilibrium line of 87 mol % CH$_4$/5 mol % C$_2$H$_6$/CO$_2$ + 0.293 mol % TBAB(aq) almost coincides, which proved that TBAB dominated the hydrate phase equilibrium rather than the gas components. Similar to the system of 87 mol % CH$_4$/5 mol % C$_2$H$_6$/CO$_2$ + 0.293 mol % TBAB(aq), the hydrate phase equilibrium line of 92 mol % CH$_4$/CO$_2$ + 0.293 mol % TBAB(aq) was significantly shifted about 2.7 K toward a higher temperature compared to that of 92 mol % CH$_4$/CO$_2$ + water. Meanwhile, it could be clearly seen that the hydrate phase equilibrium line of 92 mol % CH$_4$/CO$_2$ + 0.293 mol % TBAB(aq) almost coincides, which proved that TBAB dominated the hydrate phase equilibrium rather than the gas components.

Table 2. Hydrate Phase Equilibrium Data and Enthalpy of Hydrate Dissociation of 92 mol % CH$_4$/CO$_2$ in Water and 0.293 mol % TBAB(aq)a

<table>
<thead>
<tr>
<th>system composition</th>
<th>temperature (K)</th>
<th>pressure (MPa)</th>
<th>enthalpy of hydrate dissociation (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>92 mol % CH$_4$/CO$_2$ + water</td>
<td>286.46</td>
<td>10.06</td>
<td>59.35</td>
</tr>
<tr>
<td>283.85</td>
<td>7.42</td>
<td>61.56</td>
<td></td>
</tr>
<tr>
<td>282.80</td>
<td>6.41</td>
<td>62.69</td>
<td></td>
</tr>
<tr>
<td>282.02</td>
<td>5.74</td>
<td>63.50</td>
<td></td>
</tr>
<tr>
<td>278.68</td>
<td>4.33</td>
<td>65.22</td>
<td></td>
</tr>
<tr>
<td>289.46</td>
<td>9.71</td>
<td>147.65</td>
<td></td>
</tr>
<tr>
<td>288.72</td>
<td>7.75</td>
<td>156.81</td>
<td></td>
</tr>
<tr>
<td>287.38</td>
<td>5.53</td>
<td>157.99</td>
<td></td>
</tr>
<tr>
<td>286.05</td>
<td>3.94</td>
<td>163.04</td>
<td></td>
</tr>
<tr>
<td>284.88</td>
<td>2.95</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>283.70</td>
<td>2.12</td>
<td>169.38</td>
<td></td>
</tr>
</tbody>
</table>

aCombined standard uncertainties for TBAB(aq) mole fraction, temperature, and pressure are ±0.002 mol %, ±0.1 K, and ±0.025 MPa, respectively, with the confidence level of 0.95.
CH$_4$/5 mol % C$_2$H$_6$/CO$_2$ + 0.293 mol % TBAB(aq), TBAB as a guest molecule formed a semihydrate more easily than CH$_4$, CO$_2$, or C$_2$H$_6$ molecules. CH$_4$, CO$_2$, or C$_2$H$_6$ molecules migrated into the empty cages of the TBAB semihydrates, which leads to the same thermodynamic conditions as those of the gas-forming hydrate in TBAB solutions.

3.2. Enthalpy of Hydrate Dissociation.

The enthalpies of hydrate dissociation of 92 mol % CH$_4$/CO$_2$ and 87 mol % CH$_4$/5 mol % C$_2$H$_6$/CO$_2$ in water and 0.0293 mol % TBAB(aq) are shown in Tables 2 and 3, respectively. The calculation results are shown in Figure 5. It could be seen that the dissociation enthalpy of the hydrate significantly increased by adding 0.0293 mol % TBAB. The average enthalpy of the hydrate dissociation of 92 mol % CH$_4$/CO$_2$ increased from 62.46 kJ/mol in water to 160.21 kJ/mol in 0.0293 mol % TBAB(aq). Meanwhile, the average enthalpy of the hydrate dissociation of 87 mol % CH$_4$/5 mol % C$_2$H$_6$/CO$_2$ increased from 72.89 kJ/mol in water to 181.61 kJ/mol in 0.0293 mol % TBAB(aq). Normally, guest molecules were held in clathrate cage via van der Waals force. However, TBAB molecules (the guest) participated in the formation of semiclathrate cage via hydrogen bond, which is stronger than van der Waals force. As a consequence, the enthalpies of the hydrate dissociation for binary and ternary gas mixtures in 0.0293 mol % TBAB(aq) are larger than those in water. This phenomenon also indicates that the gas hydrate is more easily formed in TBAB solution, which confirms the results of the hydrate phase equilibrium.

4. CONCLUSIONS

In this work, binary gas mixtures of 92 mol % CH$_4$/CO$_2$ and ternary gas mixtures of 87 mol % CH$_4$/5 mol % C$_2$H$_6$/CO$_2$ were studied as simulation-associated petroleum gas and the hydrate phase equilibria of binary and ternary gases were measured both in water and 0.293 mol % tetra-n-butyl ammonium bromide (TBAB) solution in temperature range from 278.61 to 289.46 K and pressure range from 2.12 to 10.06 MPa, with 24 points in total. Hydrate phase equilibrium line of 87 mol % CH$_4$/5 mol % C$_2$H$_6$/CO$_2$ + water shifted about 2.4 K toward a higher temperature compared to that of 92 mol % CH$_4$/CO$_2$ + water. Meanwhile hydrate phase equilibrium lines of binary gas mixtures and ternary gas mixtures in 0.293 mol % TBAB(aq) shifted about 5.3 and 2.7 K toward a higher temperature compared to that in water, respectively. Also, it can be found that TBAB dominated the hydrate phase equilibrium rather than gas components. While binary and ternary gas mixtures in 0.0293 mol % TBAB(aq) are more stable than those in water.
ternary gas hydrate formation in 0.293 mol % TBAB, TBAB as guest molecule forming semihydrate occurs easier than CH₄, CO₂ or C₂H₆ molecules. CH₄, CO₂ or C₂H₆ molecules migrated into empty cages of TBAB semihydrates, which leads to same thermodynamically conditions that gas forming hydrate in TBAB solutions.

Lastly, the calculation results show that the dissociation enthalpy of the hydrate significantly increased by adding 0.0293 mol % TBAB. The average enthalpy of hydrate dissociation of the binary gas mixture hydrate increased from 62.46 kJ/mol in water to 160.21 kJ/mol in 0.0293 mol % TBAB(aq). Meanwhile, the average enthalpy of the hydrate dissociation of ternary gas mixture hydrate increased from 72.89 kJ/mol in water to 181.61 kJ/mol in 0.0293 mol % TBAB(aq). The results could provide important fundamental thermodynamic data for hydrate-based associated petroleum gas separation.

AUTHOR INFORMATION

Corresponding Author
E-mail: cxmllang@scut.edu.cn. Tel: 86-20-22236581.

ORCID
Shuanshi Fan: 0000-0002-2227-7620
YanHong Wang: 0000-0002-0059-8159
Xuemei Lang: 0000-0002-3189-7290

Funding
This work was supported by the National Natural Science Foundation of China (51576069 and 21736005), and also supported by Sinopec Science and Technology Research and Development Project (No. 317020-12).

Notes
The authors declare no competing financial interest.

REFERENCES

